PBC - Pulse Blaster Compiler

version: o 0.1 (in development)
Revised: Feb 11, 2002

©2001,2002 Tomaz Apih (tomaz.apih@ijs.si)
PBC 0.1 is distributed as freeware. I'm not aware of any bugs that could blow up your power

amplifier, but it's understood that you use this software at your own risk.
All other standard freeware disclaimers apply.

Contents
1. Introduction 2
2. Installation 2
2.0 WIRAOWS 95, 98, ME ... 2
2.2 WIRAOWS INT, 2000 ... eeeeees 2
2.3 LERIUX ..ot ettt ettt e ta et e e taeetaeetaeeaee s 2
3. PBC program description 3
3.1 StAPEING PBC........oooii oottt n 3
B2 USING PBC ...ttt ettt ettt ettt ettt n 4
4. PP (“PulseProgram”) language 5
COMIMEILS ...ttt e e ettt e e et e e e et e e et e e e enaraa s 5
LADCLS ... 5
B I DELAY ..ottt ettt 6
G2 PULSE.........ooeeiieeeeeee ettt 6
BB STOP ...ttt 7
G A GOTO LADBEL: ... 7
4.5 GOSUB label: RETURNccoccoimiiiiiiiiiiiie et 7
4.6 LOOP 1c... ENDLOORP..........ccooioiiiiiiiiieieeeee e 8
B 7 WAIT ..o ettt ettt ettt ettt 8
5. Support 8

1. Introduction

PBC (Pulse Blaster Compiler) is a GUI around PBCE (Pulse Blaster Compiler Engine). PBCE
is a software component (object) that translates (compiles) pulse programs written in a simple,
easy to read language (PP="“pulse program™) into binary programs which can be directly
uploaded to PulseBlaster (SpinCore Technologies, Inc.). PBC wraps PBCE, and allows user to
open/edit/save pulse programs and run them directly if PulseBlaster is installed in the PC.
PBCE will be used in NMR/NQR program SeveNMR developed at J. Stefan Institute,
Ljubljana, Slovenia.

It is easier to develop/debug/test PBCE if it is included in a small program, and PBC is just
that.

Basically, if you want to PulseBlaster to produce a train of 2 microseconds separated 1
microsecond long pulses on output bit 0 (pin 13), you don't have calculate and write hex code
like:

00000000030000000000002F

000100000000000600000061

Instead, write pulse program like:
Start:
PULSE [1] 1lu
DELAY 2u
GOTO Start:

and PBC will compile it to hex code and (optionally) start (trigger) PulseBlaster.

2. Installation

2.1 Windows 95, 98, ME

Unzip PBC.EXE and PBC.INI to any directory of your choice.
Edit PBC.INI and write appropriate PulseBlaster hardware address [PPCARD)] section.

2.2 Windows NT, 2000

Install PBC.EXE like for Win95.

Prior to running PBC you have to install also DriverLINX driver to enable 1/O port access
under Windows NT. A small installation of DriverLINX is available as freeware at:
<http://venezia.cx/~diskdude/software/cbuilder/index.htmI>.

You have to have administrator privileges to install DriverLINX.

2.3 Linux

There is no Linux version of PBC as yet, although in principle one would need only to
recompile Delphi source code under Kylix.

3. PBC program description

3.1 Starting PBC

Upon starting PBC program, PBC.INI initialisation file is loaded. Specify base,

frequency, and memory values in the [PPCARD] section. Specify pulsemasks for the
named pulses in [PULSEMASKS] section.

An example of PBC.INI file

[PPCARD]

; used only for PULSEBLASTER card
type=PB

; hardware base address

base=$340

; frequency in MHz

frequency=50

; internal (memory=0) or external (memory=1)
memory=0

[PULSEMASKS]

; definitions of pulse masks come here,

; edit this section to suit your connections
; format: <pulsename>=<mask>

; <pulsename> can have up to 10 characters
; <mask> can be either in hex (e.g. $10)

g or in dec (e.g. 16)

+X=$01

+Y=502

-X=504

-Y=508

TRIGGER=2

GATE=S$80

+X_GATE=$81

ALL PULSES=SFFFFFF

EVEN PULSES=$555555

ODD_PULSES=SAAAAAA

; Masks for pins on 37 pin J10 connector
PIN 13=501
PIN 25=502
PIN 24=504
PIN 11=508
PIN 10=$10
PIN 22=520
PIN 21=540
PIN_08=580
PIN 07=$0100
PIN 19=$0200
PIN 18=50400
PIN 05=50800
PIN 04=51000
PIN 16=$2000
PIN 15=$4000
PIN 02=$8000

3.2 Using PBC

Neither features nor GUI of PBC are in a stable form as yet, but its usage should be quite self-

evident. Basically user has to:

1) Start the program

2) Write pulse program in the “Source” window (alternatively, you can Open pulse program
from disc, or paste source code to “Source” window.

3) Click “Parse”. Program will be parsed and eventual parsing errors will be reported. Parsed
program will be shown in “Parsed” window.

4) Click “LoadParsed”. Program will be loaded (using the current value of the variables) to
PulseBlaster card and PulseBlaster will be triggered. The value of PulseBlaster status bits
should be displayed in the status bar and on the right of the screen.

5) Click “Stop” to stop the program

= PBC: PulseBlaser Compiler

DOpen Sawe Parse LoadParsed | |Stop| Info About
’;:l -
et Q
Source Ivgriubleﬂ Parsed | Compiled | Help | [PB Stetus Bits
=]
jexample programi:
;| =lick "Parse" in the top row to parse program, Reset
] then <¢lick "LoadParsed™ to start PulseBlaster) h
I Funning
LooP 100 rmlhq
DELAY lu
LOOP 100000 I Stopped
PULSE [SFFFFF] 1lu
DELAY Zu
ENDLOOP
LOOP 100000
PULSE [SFFFFF] Zu
DELAY 1lu
ENDLOOP
DELAY 10U
ENDLOOP
3TOP
; to explore further, Load&Run "TUTORIAL-1.FPP" file -
“| | »
FEC: FulseBlaster Compiler =
Creating TDLPortIO driver J
PulseBlaster status:
acddr = 832 vﬂwh‘
teg. = 30 NNz
memory = 0O {0|1)
d-oy:= 3
eyclh = ZB-8B _]
Stalus 38 Progmed=On Reset=On Running=On Wailing=0f Stopped = Off

Fig.1.
PBC main screen with “Source” window.

Source Vuﬁﬂe»‘«lpumﬂ(:umbdh-ldp | Source | Variables PﬂrwdlCurrpib:lh-leip |

D0=1s

D1=1.1u line label:imnemonic (0OP) Pattern Data Delay
D2=2.2u 0000 Loop { 2) 000000 OO0063 1E-6
TAL=15m 0001 Loop { 2) OFFFFF 186%F 1E-6
short_chelay=5 5E-6 0002 EndLoop (3) 000000 ODOO1 2E-6
ong_delay=20s 0003 Loaop i 2) OFFFFF 186%F ZE-6
counter] =10 0004 EndLoop (3) 000000 00003 L1E-6
C2=5 0005 EndLoop (3) 000000 00000 1E-6
[VarDelay=1u 0006 Stop { 1) 000000 00000 2E-7
Fig.2
Variables, defined in “Variables” window. Fig. 3

Parsed program of Fig. 1

4. PP (“PulseProgram™) language
PP programs are ASCII files with .PP extension.

Comments
If the first character of the PP line is semicolon (;), the line is treated as a comment.

Labels

PP program lines can be optionally labelled by a word, terminated by a colon (:). Label can

stand on an empty line, or in front of PP command.

Warning:
In some cases (most, in fact), two PP commands are compiled into singe PulseBlaster
VLIW. Only the first command can be labeled in such a case. Therefore there must be no
labels in front of GOTO, GOSUB, RETURN or ENDLOOP commands, or immediately after
LOOP command.

Example:

Jumpl: DELAY 10u
GOSUB Subrutl:
PULSE [1] 10u
GOTO Jumpl:

Subrutl:
PULSE [$FF] 100u
RETURN

STOP

4.1 DELAY

Syntax:
DELAY delay
Parameters:
delay : delay in seconds
DELAY command inserts a “blank™ delay of length delay with all pulses off.
Parameter delay can be:
- constant real number, optionally followed by “s” for second (default), “m” for millisecond,
“u” for microsecond, or “n” for nanosecond
- variable name (in PBC, variable values are defined in “variables” window.
- general expression, such as 1m+1u, D1-D2 , etc.
- in PBC v0.1, only short delays (up to approx. 65 seconds) are supported

Examples:
DELAY 10u
DELAY 0.01lm
DELAY 0.00001
DELAY 0.00001s
DELAY tau
DELAY D4-1u

Remarks:
DELAY and PULSE commands are usually compiled into PulseBlaster “Continue” Very-
Long Instruction Word (VLIW). If they follow LOOP, or stand in front of ENDLOOP,
GOTO, GOSUB or RETURN commands, they will be integrated into PulseBlaster “Loop”,
“End Loop”, “Branch”, “Jump SR or “Return SR” VLIWs.

Warning:
Long delays (over 2** PulseBlaster clock cycles ~ approx. 1 minute) are not supported in
the current version of PBC.

4.2 PULSE

Syntax:

PULSE [pulses] delay
Parameters:
- pulses: pulse mask (s)
- delay: length of pulse in seconds
PULSE command inserts a pulse of length delay to the PulseBlaster output lines, defined by
[pulses]. Parameter pulses represents pulse masks. Parameter pulses can take any value
between 0 and 2**-1. Pulse masks, specified in hexadecimal system, must be preceded by $
character. Several pulses, separated by commas, can be specified in PULSE command. In this
case, logical OR is applied to pulses bitmaps. pulses bitmaps can be given in terms of named
pulse. Named pulses are not variables, like delays, but are rather constant bitmasks, specified
in the PBC.INI file.

Examples:
PULSE [3] 1lu
PULSE [1,2] 1lu
PULSE [+X,GT] 1lu
PULSE [SFF] 0.5U
PULSE [255] 500n
Remarks:

PULSE command is usually compiled into PulseBlaster “Continue” VLIW.
“PULSE [] delay ”isthe same as “ DELAY delay . See remarks for DELAY.

4.3 STOP

STOP command is directly compiled into PulseBlaster “Stop” VLIW. No parameters are
required (a minimum delay count is inserted by default).

4.4 GOTO label:

Unconditionally continue execution of the program on a labelled line:
Example:
StartAgain:
PULSE 10u
DELAY 10u
GOTO StartAgain:

Remark:
GOTO command and DELAY/PULSE command in front of it are compiled into a single
PulseBlaster Branch VLIW.

4.5 GOSUB label: RETURN

Jump
Example:
DELAY 10u
GOSUB Comb:
DELAY 20u
GOSUB Comb:
DELAY 30u
GOSUB Comb:
STOP
; subroutines
Comb:
PULSE [+X] bu
DELAY 5u
PULSE [+X] b5u
RETURN
Remark:
GOSUB command and DELAY/PULSE command in front of it are compiled into a single
PulseBlaster “Jump SR” VLIW. RETURN command and DELAY/PULSE command in front
of it are compiled into a single PulseBlaster “ReturnSR” VLIW.

4.6 LOOPn........... ENDLOOP

Repeat LOOP # times.

Remark:
LOOP n command must be followed by DELAY or PULSE command, since they are
compiled into a single PulseBlaster “Loop” VLIW. ENDLOOP command must be preceded
by DELY or PULSE command. Consequently, you need at least 2 “DELAY or PULSE”
commands in the “LOOP ... ENDLOOP” sandwich.

4.7 WAIT

WAIT command is directly compiled into PulseBlaster “Wait” VLIW. No parameters are
required (a minimum delay count is inserted by default).

S. Support

No support for PBC is promised, but I will be grateful for any feedback or bugs report sent to
tomaz.apih@jjs.si.

