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Congratulations and THANK YOU for choosing a design from SpinCore 
Technologies, Inc.  We appreciate your business.  At SpinCore we try to 
fully support the needs of our customers, so if you ever need assistance 
please contact us and we will strive to provide the necessary help. 

© 2000-2008 SpinCore Technologies, Inc. All rights reserved. SpinCore 
Technologies, Inc. reserves the right to make changes to the product(s) or 
information herein without notice. PulseBlaster™, SpinCore, and the 
SpinCore Technologies, Inc. logo are trademarks of SpinCore Technologies, 
Inc. All other trademarks are the property of their respective owners.
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1. Quick Product Overview 

We are proud to present PulseBlaster™ - our Intelligent Pulse Programmer-
Pattern Generator Board for NMR/MRI/NQR/ICR/Solids and related resonance 
and test applications. The entire logic design (excluding output drivers) 
is contained in a single silicon chip, qualifying it as a system-on-a-chip 
(SOC) design – the industry’s first and only design of this kind. 
Implemented on a 0.22 micron, state-of-the-art programmable silicon, its 
innovative Very-Long Instruction Word (VLIW) design has many unique and 
attractive features such as high speed, small size, low power consumption, 
increased functionality, and ease of programming.  

Output signals 

  PulseBlaster™’s standard model has 24 individually controlled output 
bits that are capable of delivering +-25 mA per bit. The outputs can be 
set to either the 5 V or 3.3V I/O logic standard. Output signals are 
available both on the PC bracket-mounted DB-25 connector and on an 
internal, flat-cable header. 

Timing Characteristics 

    PulseBlaster™’s timing controller can accept either an internal (on-
board) crystal oscillator or an external frequency source of up to 100 
MHz. The innovative architecture of the timing controller allows the 
processing of either simple timing instructions (delays of up to 
4,294,967,296 clock cycles), or double-length timing instructions (up to 
2^52 clock cycles long - nearly 2 years with a 100 MHz clock!). 
Regardless of the type of timing instruction, the timing resolution 
remains constant for any delay – just one clock period (e.g., 10 ns for a 
100 MHz clock, or 100 ns for a 10 MHz clock). 

The controller has a very short minimum delay cycle – only five clock 
periods. This translates to a 50 ns pulse/delay with a 100 MHz clock. It 
is so fast that the board can actually be used to generate rf pulses – the 
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20 MHz (max) update rate can be used for IF testing of some systems, and 
even as the rf Larmor frequency of many low-field systems!

Instruction Set

    PulseBlaster™’s design features a set of commands for highly flexible 
program flow control. The micro-programmed controller allows for programs 
to include branches, subroutines, and loops at up to 16 nested levels – 
all this to assist the user in creating dense pulse programs that cycle 
through repetitious events, especially useful in numerous multidimensional 
spectroscopy and imaging applications. 

Optional Memory Chip

  The internal, on-chip, memory space for the system-on-a-chip design is 
512 80-bit words. In addition, the board features an optional memory chip 
to allow for execution of much larger programs. The optional memory chip 
provides 32k words of program space - a number that is much larger than 
necessary for even the most complex pulse programs today. The trade-off 
for using the additional on-board memory is that the minimum delay 
increases from five to seven clock periods. 

External triggering and cascading

    PulseBlaster™ can be triggered and/or reset externally via dedicated 
hardware lines.  The two separate lines combine the convenience of 
triggering (e.g., in cardiac gating) with the safety of the "stop/reset" 
line.  The required control signals are “active low” (or short to ground). 
The design also allows for multiple boards to be synchronized, easily 
extending the 24-bit output pattern to 48 bits or more. If a larger number 
of output bits is necessary, e.g., 64, 128 or 256, SpinCore can customize 
the design to suit the individual needs.  Please contact SpinCore for 
details. 

Summary

    PulseBlaster™ is a versatile, high-performance pulse/pattern generator 
operating at speeds of up to 100 MHz and capable of generating delays 
ranging from 50 ns to over 2 years per instruction. It can accommodate 
pulse programs with highly flexible control commands of up to 32k program 
words. Its 24 high-current output bits are independently controlled and 
5/3.3 V user-selectable.
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2. Quick Installation Guide
PulseBlaster™ boards are ready to use out of the box.  After unpacking, 

they can be installed on your computer in any available ISA slot.  Please 
shut down your computer and turn the power off when installing the board, 
and use a screw to fasten the bracket.

PulseBlaster™ boards are factory pre-configured to operate with the 
following default settings:

ISA Base Address: 0x340.
  Clock Oscillator: Internal, installed on board; clock frequency as per 

customer specification 
Output levels: TTL
Memory select: Internal, on-chip.

These settings can be changed using on-board jumpers. Please consult 
Chapter 6 in Section II for details regarding the jumpers’ information and 
location.

No software or drivers of any kind are required to install the board. The 
board can be used on computers running any operating system that supports 
the Industry Standard Architecture (ISA) bus, including DOS, Windows, QNX, 
and Linux.  Section III of this manual, “Test and Application Programs,” 
describes sample programs that can be used to program the board for 
operation under Microsoft DOS/Windows operating systems.  The C code 
described in this manual can also be compiled under most other operating 
systems as well.  SpinCore’s web site http://www.spincore.com/ serves as a 
repository of the software described in this manual.

                                                                              11/13/20086
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1. PulseBlaster™ Design Overview 
 

The PulseBlaster™ device is an intelligent pulse/pattern generation unit. 
The intelligence of the PulseBlaster™ comes from an embedded 
microprogrammed controller core (uPC).  The uPC is able to execute 
instructions that allow it to control program flow.  This means that the 
PulseBlaster™ understands Operational Control Codes, Op Codes, and will 
execute them much the same way a general-purpose microprocessor does.  The 
PulseBlaster™’s microcontroller is different from the general-purpose 
microprocessor in that it does not contain an arithmetic logic unit (ALU) 
and is incapable of doing mathematical or logical calculations.  

Figure 1. Block diagram of PulseBlaster™ design.
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Figure 1 presents a block diagram of PulseBlaster™ processor and the 
board. The major blocks are the memory, both internal to the processor 
chip and external to the chip (optional, on board), the ISA Bus 
Controller, the Delay Counter, the Output Register, and the micro-
programmed controller uPC. The clock oscillator and the output buffers are 
external to the processor.  The entire board is in the PC-XT form factor.

The benefit of the uPC core is the increased code density achieved when a 
program outputs a repetitious pattern.  A potential disadvantage of a uPC 
design is that it takes time for the uPC to make decisions on program flow 
and forces a longer minimum delay cycle time over some other types of 
designs.  However, by carefully designing the uPC and retaining only the 
most critical Op Codes, the latency of the uPC can be kept to a minimum. 
In the PulseBlaster™ design, the minimum delay cycle latency is 5 system 
clock cycles.  The maximum system clock speed is, currently, 100 MHz. 
Note: When external memory is used, the minimum delay cycle is 7 clock 
cycles long.

The uPC core uses two stacks1 in order to control program flow.  The first 
stack, the Subroutine Return Address Stack, is used to hold the return 
address of the currently executing subroutine.  This stack is 16 addresses 
deep, implying that there can be no more than 16 embedded subroutine 
calls.  This does not mean that there can be no more than 16 subroutine 
calls in a program.  It means that the user may have at most 16 
consecutive subroutine calls without ever returning from a subroutine. 
Every time a call to a subroutine is encountered, the next address in 
memory is pushed2 onto this stack, and whenever a return from subroutine 
command is encountered by the uPC the return address is popped3 off this 
stack.

The second stack used is the Loop Count Stack.  This stack is used to 
hold the loop count for any loop command encountered by the uPC.  This 
stack also has 16 locations and this means that no more than 16 embedded 
loops can occur at any given time.  It should be noted that Long Delay 
instructions are implemented by using the loop control structure. For 
programs using very long delay values, the greatest number of embedded 
loops is 15, since the Long Delays instruction will use one location on 
the loop stack.  Any long delay value that is not prime (and a couple of 
other special cases) can be implemented with the one instruction loop. 
All other rare cases must be implemented in a 2-instruction set.  

Timing control is an integral part of pattern generation.  The 
PulseBlaster™ features an embedded 32 bit delay counter. This counter 
provides the delay tracking capabilities needed and generates an I/O 
strobe that clocks data through the output latches at the correct time. 
Maximum delay times for a given clock rate be calculated by multiplying 
the clock period by 2^32.  When using a Long Delay instruction the maximum 
delay value is the clock period multiplied by 2^52.

The minimum delay cycle for the design depends on whether internal or 
external memory is being used for program memory.  The minimum delay 
possible when using internal memory is 5 clock cycles.  There is an 
1 A stack is a first-in-last-out (FILO) buffer.
2 Pushing an item onto the stack simply means that it is being added to the buffer.
3 Popping an item from the stack simply means that it is being removed from the buffer.
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increased latency of 2 clock cycles when using external memory.  If the 
internal memory is used, the maximum number of instruction words is 512. 
When using extremely long delay values, the worst case minimum number of 
instruction words is around 256 (implying that every delay takes 2 
instruction words).  The penalty in minimum delay latency incurred by 
using external memory is offset by the depth that the memory provides for 
program space.  Using the external memory provides the user with 32k (32 * 
1024) words of program memory space.  The external memory depth is 
required when long non-repeating patterns require generation.

The ISA Bus Controller, IBC, serves as an interface between a PC and the 
PulseBlaster™ Processor. It handles programming the system memory, arming 
the device trigger, and can generate trigger and reset signals for the 
board.
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2. PulseBlaster™ Machine Language 
 

 Programming architecture and word definition
  The PulseBlaster™ processor implements an 80-bit wide Very-Long 

Instruction Word (VLIW) architecture. The 80-bit word has specific 
bits/fields dedicated to specific purposes, and every word should be 
viewed as a single instruction of the micro-controller. The execution time 
of instructions can be varied and is under (self) control by one of the 
fields of the instruction word. All instructions have the same format and 
bit length, and all bit fields have to be filled.  Figure 2 shows the 
instruction word’s fields and bit definitions.  

Bit Definitions for the 80-bit Very-Long Instruction Word (VLIW)
--------------------------------------------------------------

 Output Pattern:79-56 | Data Field:55-36 | OP Code:35-32 | Delay Count:31-0 

     (24 bits)         (20 bits)     (4 bits)      (32 bits)
--------------------------------------------------------------

Figure 2. Bit definitions for instruction (machine) word of PulseBlaster™.

  The individual fields, starting from the least-significant bit, are 
interpreted as follows:

Delay Count – the lowest order bits of the command word - 32 bits long. 
This value is specified in clock cycles. The internal counter 
used in the PulseBlaster design counts down from the value 
specified in this field down to zero. There are two basic 
rules that need to be observed when specifying the delay 
count in clock cycles.

1) The minimum delay value entered must be greater than or 
equal to 2 cycles; and 

2) The delay value generated equals the number of clock 
cycles entered *PLUS* three cycles.  The extra three 
cycles come from overhead in the timing control logic.
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OP Code - is 4 bits long.  The following Op codes are allowed:

    binary    hex       Mnemonic
    -------------------------------
    0000        0         Continue
    0001        1         Stop
    0010        2         Loop
    0011        3         End Loop
    0100        4         Jump SR (Jump to Subroutine)
    0101        5         Return SR (Return from Subroutine
    0110        6         Branch (or just Jump, unconditionally)
    0111        7         Long Delay

Table 1. Operational Codes (OP Codes) for the PulseBlaster microcontroller
  Most of the Op Codes are similar to instructions for general-purpose 
processors and have the same effect on program flow as in a general- 
purpose processor.  In the following subsection, all PulseBlaster™ Op 
Codes will be explained in details.

  The CONTINUE instruction has no effect on program flow.  The next 
instruction executed will be the one immediately following the current 
instruction in memory.  The basic effect of the CONTINUE command is to 
delay a specified amount of time and generate a particular output 
pattern.    

  The STOP command is used to tell the uPC that the end of a program 
has been reached and that it should remain in an idle state until it 
has been reset or received another trigger.  This instruction does not 
take any data.

  The LOOP command denotes the beginning of a loop structure in a 
program and forces the uPC to push the data field of the instruction 
word onto the Loop Stack the first time it is encountered in a 
program. The user does not have to define register locations for the 
loop count values because the uPC automatically allocates resources if 
they are available.  If too many loops are nested together, the 
outside loop will not function correctly and the design fails.  There 
is no checking in hardware for the error condition caused by pushing 
too many loop count values onto the loop stack.  It is the user’s (or 
program compiler’s) responsibility to ensure that no more than 16 
loops are ever nested together.  

  The END LOOP command forces the uPC to decrement the most recent 
loop count in the Loop Stack.  It also redirects the program counter4 

to the top of the loop if the loop has not been completed.  If the 
loop has been completed, the program continues to the next instruction 
in memory.  The address of the top of the loop is specified as a data 
field associated with the END LOOP Op Code. 

 The JUMP to SUBROUTINE command forces the uPC to modify the program 
counter and redirects the execution of the next command to be at the 
location specified in the data field of the instruction word. This 
command also forces the uPC to push the return address (next address 
after the JUMP SR command) onto the Subroutine Return Address Stack. 

4 The program counter is a register that tracks the address of the next command to be executed.
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Allocation of all resources for saving the return address is handled 
by the uPC and the user does not need to specify how resources should 
be allocated.  The number of nested subroutines can not exceed 16 
calls.  If more the 16 calls are made in a row, the outer subroutine 
call(s) will return to address 0.  No error checking is done in 
hardware to determine if the stack has overflowed.  It is the user’s 
responsibility to ensure that no more than 16 subroutines are active 
at the same time.

 The RETURN from SUBROUTINE command instructs the uPC to pop the 
most recent return address off the Subroutine Return Address Stack and 
execute that address as the next program instruction.  There is no 
data field associated with this command.

 The BRANCH instruction changes the program counter’s value.  It 
specifies a new location in memory to start execution from on the next 
instruction.  The location is specified as a data field associated 
with the BRANCH instruction. Note: this case is similar to the JUMP to 
SUBROUTINE command except no return address is pushed onto the stack.

 The LONG DELAY instruction implements a true zero overhead loop 
instruction.  This command will generate a single particular output 
pattern for long periods of time by looping and executing the same 
instruction many times.  The delay period can be calculated by 
multiplying the instruction ‘delay length’ by the (‘loop length’ + 2). 
The pipelined nature of the uPC adds two to the loop length.  It 
should also be noted that the minimum number of loops is three and the 
minimum value that can be loaded into the loop counter is one.

Data Field – is 20 bits wide.  Its meaning depends on the OP Code, as 
follows:

- If the OP Code is BRANCH, the corresponding data field must 
contain the exact address of the instruction to be executed next, 
i.e., where the program jumps to. NOTE: the first line of the 
machine code has the address zero, i.e., binary 00000; the second 
line has the binary address 00001, etc. 

- If the OP Code is LOOP, the corresponding data field entered must 
equal the number of loops desired *MINUS* one. Programming the Data 
Field with this value in conjunction with the LOOP Op Code provides 
the desired number of loops in the output.

- If the OP Code is END LOOP, the corresponding data field entered 
must be the exact address of the instruction where the originating 
LOOP instruction resides. NOTE: the first line of the machine code 
has the address zero, i.e., binary 00000; the second line has the 
binary address 00001, etc.

- If the OP Code is JUMP SR, the corresponding data field must 
contain the exact (Note as above) address of the instruction where 
the subroutine starts.

- If the OP Code is LONG DELAY, the corresponding Data Field must 
contain the (number of loops desired – 2). This instruction is a 

                                                                              11/13/200812



www.spincore.com

PulseBlaster
zero-overhead loop, and its execution time equals the {delay} times 
the (Data_field+2).

- All other instructions ignore the Data Field.

Output Pattern - this field specifies the 24 output bits.  The output 
pattern is maintained for the entire duration of the 
current machine word, as specified in the delay count 
field (plus three cycles).
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3. PulseBlaster™ Control Commands 

Table 2 lists the control commands that are used by a host computer in 
order to program and use the PulseBlaster™ Pulse/Pattern Generator Board 
over the ISA Bus.  The explanation of the individual control codes 
follows. The control code values are specified in offsets from the board’s 
Base Address.  The program in Section III, Chapter 3 “Programming with 
C/C++: An Example” can be consulted for information on how to implement 
control commands.

Control Code Function
0 Device Reset
1 Start Trigger
2 Load Number of Bytes per Word 
3 Select Memory Device 
4 Clear Address Counter
5 Not Currently Used
6 Load Memory
7 Programming Finished

Table 2. PulseBlaster™ Control Commands

DEVICE_RESET: This command allows the PC software to reset the 
PulseBlaster™.  After reset, the pattern generator can not be re-armed 
until the IBC has been re-initialized.  The DEVICE_RESET command does not 
have any data associated with it  

START_TRIGGER: This command can be used to start execution of a machine 
program residing in PulseBlaster™’s memory.  NOTE: the PulseBlaster™ 
always starts program execution from address zero.  The START_TRIGGER 
signal is only accepted, however, after the board has been initialized. 
The START_TRIGGER command does not have any data associated with it.

LOAD_NUMBER_OF_BYTES_PER_WORD: This command is used to facilitate 
programing of the memory used by the PulseBlaster™.  The ISA Bus 
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Controller (IBC) accomplishes this task by using the Bytes per Word 
Counter to keep track of memory device width.  It can handle memory 
devices from 2 to 15 bytes wide.  The counter is loaded with the data byte 
sent over the ISA Bus with the Control Code to load the counter.  The data 
value used to load the counter is also saved in a control register to 
allow the Bytes per Word Counter to be reloaded automatically.  The Bytes 
per Word Counter ensures the correct number of bytes are used to 
reconstruct the memory word.  By using this implementation, memory widths 
of any practical size can be used without changing the firmware design. 
It also allows for programming internal memory of unusually large width to 
facilitate the use of VLIW architecture, a design approach that is used in 
the PulseBlaster™.

SELECT MEMORY DEVICE: This instruction is used to specify which memory 
device to write to, either the embedded or external memory.  In the 
PulseBlaster™ design, writing a zero data byte with this instruction 
programs the internal memory of the PulseBlaster™.  If a ‘one’ is sent in 
the associated data byte, the external memory is programmed.

CLEAR ADDRESS COUNTER: The Address Counter is used to manufacture the 
memory address.  The Address Counter is not loadable; it can only be 
cleared and started at zero.  It is not possible to load a particular 
section of memory.  All loads must start from either the beginning of 
memory, or wherever the Address Counter left off.

 
LOAD_MEMORY: This instruction is used to specify data that should be used 

to program the memory used by the device.  Since the ISA data is taken 
only one byte at a time, the IBC must reconstruct the data word to be 
programmed.  The data word is reconstructed in the IBC most significant 
byte first.

PROGRAMMING FINISHED: This instruction enables the pattern generator of 
the PulseBlaster™.  This instruction prevents the pattern generator from 
accepting a hardware trigger or software start command before the device 
has been programmed.  Once the design has been programmed, the PROGRAMMING 
FINISIHED command must be sent to arm the device for operation.  After the 
pattern generator has been armed, any hardware trigger or software start 
command will cause the system to start operation. The PulseBlaster™ can be 
reset by issuing the DEVICE_RESET command.  This will internally clear the 
PROGRAMMING FINISHED instruction and prevent the pattern generator from 
operating again until the IBC has been re-initialized.
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4. PulseBlaster™ Board Initialization 

Initialization of the PulseBlaster™ Board for operation involves a 
minimum of four steps.  The steps are as follows:

1) Send LOAD NUMBER OF BYTES PER WORD instruction.
2) Send SELECT MEMORY DEVICE instruction.
3) Send CLEAR ADDRESS COUNTER instruction.

3.A. (Optional) loading data to memory.
4) Send PROGRAMMING FINISHED instruction.

If these four commands are not sent from a PC, the PulseBlaster™ board 
will not run as desired.  All four instructions are required as an attempt 
to ensure that the device has been programmed before it can be armed. 
Loading of the memory with data has to be performed between steps three 
and four, step 3.A above.  Upon reset, all four instructions must be 
executed to restart the device again.  

A Sample C code that implements the above commands is presented in 
Section III of this Manual, Chapter 3, “Programming with C/C++: An 
Example.”
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5. ISA Bus Programming Issues 

In order for the embedded intelligent pattern generator to operate, the 
memory it utilizes needs to be programmed, and appropriate control bytes 
have to be sent over the ISA Bus.  To accomplish these tasks, a special 
controller, called IBC (ISA Bus Controller), was designed as the interface 
between a PC and the PulseBlaster™ Pulse/Pattern Generator. 

The IBC handles programming the system memory for the pattern generator, 
initializes the board, and controls its operation.  Once the system memory 
has been initialized, the IBC relinquishes control of the memory’s data 
and address busses to the pattern generator.  While the pattern generator 
is running, it has complete control of the memory buses.  The IBC does 
have the power to reset the pattern generator and re-take control of the 
device.  This allows for PC software to control the operation of the 
PulseBlaster™ Core Processor.  

NOTE: The data taken off the ISA Bus is one byte wide - the 16-bit data 
capability of the ISA Bus was not used in order to conserve I/O pins on 
the microchip.  Also, the IBC controller does not have the ability to 
write information to the bus. However, if necessary, three pins on 
PulseBlaster™’s board, namely RUNNING (J12-10), STOPPED (J12-7), and 
SYSTEM_RESET (J12-8) could be used to determine the status of the uPC. 

ISA-Bus Base Port Address
Each device on the ISA Bus is mapped to a port address range.  The port 

address is used to specify that data on the bus is for a particular 
peripheral device.  The PulseBlaster™ board design has the ability to 
change its port address.  This ability provides for the fact that other 
devices on the bus might have previously claimed certain port address 
ranges. Three control lines, running to the J4 header on the PulseBlaster™ 
card, allow one of eight port address ranges to be selected.  The port 
address ranges are from the ‘Base Address’ to the  ‘Base Address + 7’. 
The Base Addresses that can be specified range from 0x260 to 0x360, see 
Table 3 in the next chapter “Header/Jumper Information.” The factory pre-
set value is 0x340. 
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ISA Bus Controller
The ISA Bus Controller  uses three control signals from the ISA Bus: AEN, 

~IOW, and Bus Clock.  The control signals are used to decode the ISA Bus 
traffic.  The Bus Clock signal is used by the IBC for timing, and it is 
completely independent of the system clock of the PulseBlaster™.  The AEN 
signal is active high and indicates an address is on the bus, and that the 
address is from the DMA controller.  In order to avoid traffic from the 
DMA controller, the IBC looks for this signal to be low.  The ~IOW line 
specifies that a write (from the PC processors point of view) is 
occurring.  A write indicates that the data on the bus is destined for a 
peripheral device.  If both AEN and ~IOW are low, the data on the bus is 
being written to a peripheral device specified by the port address on the 
ISA Bus. The details of this hardware communication are hidden from the 
user standpoint if one uses the C language functions outp() or _outp().

Sending Control Commands over the ISA Bus
Once the on-chip ISA Bus Controller, IBC, finds the correct values for 

AEN and ~IOW, the address and data values are latched into control 
registers.  The address is then decoded to determine if the bus traffic is 
addressed to the PulseBlaster™.  If the address is in the defined range 
for the PulseBlaster™, then the address is used as a Control Command to 
drive the operation of the IBC.  The IBC has eight distinct Control 
Commands - see Table 2.  The Control Command values are specified in 
offsets from the Base Address.  If the Control Command has data associated 
with it, the data latched off the ISA Bus is used; else the data buffer 
register is ignored.
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6. Header/Jumper Information

The PulseBlaster™ board is a configurable system.  It allows the user 
to set jumpers on several headers on the PC card to select different modes 
of operation for the device.

Selecting ISA Bus Address: Header J4, Pins 1-2, 3-4, and 5-6.
 The Base Addresses that can be specified range from 0x260 to 0x360. 
The default, factory pre-set value for the ISA PulseBlaster™ board is 
0x340. This value can be changed, via jumpers on Header J4, according 
to the Table 3.

Base Address 
(in Hex)

Jumper Settings – Header J4
Pins 5-6  Pins 3-4 Pins 1-2

300  |         |        |
320  |         |        :
340  |         :        |
260  |         :        :
280  :         |        |
270  :         |        :
290  :         :        |
360  :         :        :

Table 3. Board’s ISA-Bus Base Address Selection 
(Legend: | jumper across pins, : no jumper)

 (Default Value = 0x340, jumpers 1-2, 5-6).
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   Selecting Master Clock Oscillator:

  The Clock Select signal is used to specify where the clock signal 
for the system will be coming from.  The PulseBlaster™ Board allows 
for use of either an on board clock or an externally supplied clock 
source.  If the signal is left tied high, the on board clock will be 
selected, else if the Clock Select line is pulled low through a jumper 
to ground, the externally applied clock will be used. (Default Value 
is the on board Clock).  
  

      The external clock source should be connected to the on-board SMA5 
connector. The connector is terminated with a 50 Ω resistor.  The 
input signal must also have a DC bias and the lowest voltage generated 
by the clock must not be lower than ground.  Driving the clock to 
negative voltages will damage the input pin on the microchip.  The 
device can accept 5.0 V volt peak input signals.

 Selecting external memory: Header J12, Pins 1-2

  The internal, on-chip embedded memory can accommodate up to 512 
machine words.  To accommodate larger programs, up to 32k machine 
words, the board has provision for using an optional memory chip.  If 
equipped, the external, on-board chip can be selected by removing the 
jumper across pins #1-2 on header J12.  If a board is not equipped 
with external memory, these pins must be jumpered.

 Selecting output voltage levels: Headers JPower1 and Jpower2

The output signals are driven by latches/drivers capable of running 
off a 5.0-V or 3.3-V supply.  The supply voltage for the drivers is 
selectable.  Table 4, below, lists the configurations for 5.0-V and 
3.3-V output driver operation.

5 V Operation
Jumper JPower1-1 across to JPower1-2
Jumper JPower2-1 across to JPower2-2

3.3 V Operation
Jumper JPower1-3 across to JPower1-4
Jumper JPower2-3 across to JPower2-4

Table 4. Output voltage selection
The JPower1 header selects the operating voltage for the output bits 
0-15, and JPower2 independently selects the operating voltage for the 
output bits 16-23.
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  Output Bits  - Connector DB-25 (J10) and Header JP9

 The following table lists the output bits for the PulseBlaster™ Pulse 
/ Pattern Generator Board. 

 
Signal Location

Bit 0 J10-13
Bit 1 J10-25
Bit 2 J10-24
Bit 3 J10-11
Bit 4 J10-10
Bit 5 J10-22
Bit 6 J10-21
Bit 7 J10-8
Bit 8 J10-7
Bit 9 J10-19
Bit 10 J10-18
Bit 11 J10-5
Bit 12 J10-4
Bit 13 J10-16
Bit 14 J10-15
Bit 15 J10-2
Bit 16 JP9-2
Bit 17 JP9-4
Bit 18 JP9-6
Bit 19 JP9-8
Bit 20 JP9-10
Bit 21 JP9-12
Bit 22 JP9--14
Bit 23 JP9-16
Output Clock J10-1
Running J12-10
Stopped J12-7
System Reset J12-8

Table 5. Output bits and signals of the PulseBlaster™ board.
   Bits 15-0 are grouped on the external DB-25 connector (also marked as 
J10) provided for accessing the signals.  The rest of the bits, Bits 23-
16, are accessible on an internal IDC header JP9.  The table also lists 
several additional output signals that are available to the outside world, 
as described in the next subsection.  All remaining pins on the DB-25 and 
JP9 connectors are connected to the ground.
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  Using external trigger/reset lines - Header J5, Pins #3 and #5.

 HW_Trigger is a signal that is pulled high by default.  When a falling 
edge is detected (e.g., when shorting pins 3-4), it initiates code 
execution.   This trigger will also restart execution of a program from 
the beginning of the code if it is detected after the design has 
reached an idle state.  The idle state could have been created either 
by reaching the STOP Op Code of a program, or by the detection of the 
HW_Reset signal.

 The HW_Reset line is pulled high by a resistor.  It can be used to 
halt the execution of a program by pulling it low (e.g., by shorting 
pins 5-6).  When the signal is pulled low during the execution of a 
program, the controller resets itself back to the beginning of the 
program.  Program execution can be resumed by either a software start 
command or by a hardware trigger.

 Additional Output Signals – Connector DB-25 and Header J12.
The internal Output Clock signal is available to the outside world, 
as it is tied to the DB25 connector, pin #1.  It is the clock signal 
used to latch patterns in the output buffers.  This clock has been 
configured to have a relatively slow slew rate so as to avoid noise 
problems on a transmission line.  This clock is not a 50% duty cycle 
clock.  The width of the high part of the signal is one system clock 
period.  

System Reset – Header J12 pin #8 is used to indicate (when low) to 
the external world that the uPC controller is in a reset state.  It 
can be used in larger systems to monitor the state of the 
PulseBlaster™ design.

A signal that is similar to System Reset is the Running signal, 
header J12 pin #10.  It is driven high when the uPC is executing 
code.  It is taken low when the uPC has entered either a reset of 
idle state. 

 
The Stopped signal, header J12 pin #7, is the last signal used to 
indicate the state of the uPC.  Stopped is asserted when the uPC has 
encountered the stop command while normally executing code.  This 
signal informs the external world that the uPC has successfully 
executed its program and has halted operation.
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 Header and Signal Locations
The location of the relevant headers and connectors on the 
PulseBlaster™ board is presented in Figure 3.

    J4         J5  Jpower2  JP9    J12          J_Power1    J10(DB-25)

Figure 3.  PulseBlaster™ Board – header/connector locations.
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1. Test Board Loader and Controller 
SpinCore has developed a simple program that can be used under Windows™ 

to quickly evaluate the PulseBlaster board under Windows95/98.  The 
program, called NewISA, can load and execute several embedded test pulse 
programs.  It can load any hex-coded pulse program from a text file.  The 
screenshots below show the simple user interface to the board.  The 
program can be launched from the command line or by double-clicking the 
corresponding icon.

Upon program’s launch, the first screen prompts the user to enter the 
board’s base address and clock frequency:

Figure 4. The initial screenshot of the simple test board loader and controller program called NewISA.
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Upon entering the base-port address and the clock frequency, the program 
allows the user to execute several default pulse programs/waveforms.  They 
include a 1 MHz waveform and a train of three 0.5 us pulses.

Figure 5.  The main screenshot of the NewISA program for quick test and control of PulseBlaster™.

The pulse programs execute automatically upon selection.  Any running 
pulse program can be stopped and restarted again with the S and R command, 
respectively.  The NewISA program also allows the user to load and execute 
any hexadecimally-coded pulse program contained in the text file called 
(by default) Program.txt. An example Program.txt file could contain

0xffffff  0x000000  0x00000007
0x000000  0x000006  0x000000f1

This simple pulse program will execute a single pulse (the first line) 
followed by a delay (the second line).  For more on machine programming, 
please see the next chapter “Understanding Machine Code: Examples.”
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2. Understanding Machine-Code: 
Examples 

To use PulseBlaster™, no machine-code knowledge is necessary if one 
relies on application programs that take care of generating the 
appropriate byte streams.  The test and application programs that are 
supplied by SpinCore and distributed with PulseBlaster™ can be used to 
generate nearly any pulse program that can be imagined, without knowing 
anything about Op Codes, Data Fields, word length, etc.  However, 
knowledge of the machine-code programming is essential in writing a 
custom pulse program compiler. 

To help understand the major machine-programming concepts, this chapter 
presents two simple machine-code programs that illustrate some of the 
information pertinent to machine programming. Those programs can be 
loaded and executed using the loader program described in the preceding 
chapter of this Manual, “Test Board Loader and Controller.” They can also 
be loaded with the C/C++ program described in the next chapter.

Sample 1 – A simple two-line program in machine code
 Just two machine instructions can generate a useful waveform - a single 
pulse followed by a delay.  If the delays are identical in both 
instructions, a square waveform will result, as in the following code, 
with explanation:

Output | Data Field | OpCode | Delay

ffffff    00000        0      00000007  <- first instruction (80 bits)
 000000    00000        6      00000007   <- second instruction (80 bits)

Delays: The number of clock “ticks” in both instructions is 0x00000007, 
decimal seven, resulting in the total duration of each instruction equal 
to ten clock cycles (three clock cycles are always inserted, 
automatically, to account for timer controller overhead).  Thus, if the 
clock frequency is 10 MHz, each instruction will last 1 us, generating a 
0.5 MHz waveform on all 24 outputs of the PulseBlaster™

Opcodes: The two Op Codes used are Continue (in the first instruction, 
the value equals 0x0) and Branch (second instruction, value 0x6). 

Data Fields: The data field in the first instruction is irrelevant, 
since the associated Op Code is Continue (0x0).  The data field in the 
second instruction is the address 0x00000, i.e., the address pointing to 
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the first instruction in the program  (program lines are counted starting 
from 0, 1, 2, etc.).

Output bits: The 24 output bits are “all ones” during the first machine 
word (0xffffff) – they form the first half of the square wave (or the 
pulse), and “all zeros” (0x000000) during the second machine word.

Sample 2 – A simple three-line program in machine code
A simple three-line program can generate a number of useful patterns. 

For example, we will illustrate a sequence of 11 pulses followed by a 
delay, running continuously.

Output | Data Field | OpCode | Delay

ffffff    0000a        2      00000007  <- (start loop, loop 11 times)
000000    00000        3      00000007   <- (end the current loop)
000000    00000        6      00000030  <-  (go back to the beginning)
 

Delays: The first and second instructions: 7 clock “ticks,” (plus three 
inserted) – they will correspond to a train of equidistant pulses (square 
wave-like). The third instruction will last longer, for 0x30 clock 
“ticks” (plus three inserted).

Op Codes: The first Op Code is LOOP (0x2), the Op Code in the second 
instruction is END_LOOP (0x3), and the Op Code in the third instruction 
is BRANCH (0x6). Thus, the program will loop first (lines one and two), 
then it will continue to line three, and then it will branch (jump) back 
to the first line.

Data Fields: The data field in the first instruction specifies the 
number of loops. The entered value is 0x0a, i.e., decimal 10. Thus, the 
program will execute 11 loops (this is because the accompanied loop 
counter counts down to 0).  The data field in the second line is the top 
address of the current loop structure, i.e., where the corresponding LOOP 
command resides (0x00000).  The data in the third instruction is the 
address where the program execution should continue next, i.e., the first 
line (0x00000).

Output bits: The 24 output bits are “all ones” during the first machine 
word (0xffffff) – they form the pulses that can be seen on an 
oscilloscope.  The second line is “all zeros” (0x000000) – these will be 
the gaps between the pulses.  The third line is “all zeros” again, for 
the duration of the last interval representing the delay between the 
groups of 11 pulses.
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3. Programming with C/C++: An 
Example

  The C source code below illustrates how the programming and loading of 
the board can be accomplished.  It can be used to quickly test the 
PulseBlaster™ board.  The program initiates the board, loads two 80-bit 
wide machine words, and starts the pulse program.  NOTE: Under Linux, the 
_outp(address, value) commands have to be replaced with 
outb(value,address) pairs, and the program has to be run by root.

Example Code

//////////////////////////////////////////////////////////////////////
//
// This script can be used to test the pulse programmer board.
// First, it initiates the on-chip ISA Bus Controller.
// Then it programs the board’s memory with two machine words.
// Afterwards, it issues one more control word - programming completed.
// And finally, it executes the start command.
// The resulting waveform should be a square wave.
//
// The script assumes that the board is at the address 0x340
//
// NOTE: Each machine word is 80-bit wide. Word organization:
//
// Output bits | Address/Loop counter | Op Code   | Delay
//  (24 bits)     (20 bits)            (4 bits)   (32 bits)

// Copyright 1999 SpinCore Technologies, Inc. http://www.spincore.com
//
//////////////////////////////////////////////////////////////////////
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#include<stdio.h>
#include<conio.h>

#define port 0x340 // This is the default base address of the board

void main(){

// Initialize the PulseBlaster™ board
_outp(port,0);       // Device Reset
_outp(port+2,0x0A);     // Load Number of Bytes per Word (10)
_outp(port+3,0x00);    // Select Memory Device
_outp(port+4,0x55); // Clear Address Counter (value irrelevant)

  
 // Load two 80-bit-long machine word instructions
// Instruction 1 - will last 4+3 clock ticks --------------------------
_outp(port+6,0xff);// First eight bits of the output pattern
_outp(port+6,0xff);// Output bits continue
_outp(port+6,0xff); // Output bits – total of 24 bits – all “ones”

_outp(port+6,0x00);  // First part of the data field
_outp(port+6,0x00);  // value irrelevant for the Op Code Continue
_outp(port+6,0x00);  // Op_Code - 4 LSBs is 0000 = Continue

_outp(port+6,0x00); // First eight bits of the Delay Value
_outp(port+6,0x00);// Delay Value bits continue
_outp(port+6,0x00); // Delay Value bits continue
_outp(port+6,0x04); // Delay Value - in clock ticks – total 32 bits

// Instruction 2 – will last 4+3 clock ticks ----------------------------
_outp(port+6,0x00);  // Output pattern
_outp(port+6,0x00);  // Output pattern
_outp(port+6,0x00); // Output pattern – total of 24 bits, all “zeros”

_outp(port+6,0x00);
_outp(port+6,0x00);  // Branch Address – points to first line, numbered 0
_outp(port+6,0x06);  // Op_Code is 4 LSBs – will cause to program to jump

_outp(port+6,0x00);
_outp(port+6,0x00);// Delay Value
_outp(port+6,0x00);
_outp(port+6,0x04);

// Signal the End of programming
 _outp (port+6, 0x00); // 
_outp(port+7,7); // Programming Finished

// Put the device in run mode
_outp(port+1,7); //Trigger – starts the pulse program execution

}
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4. Pulse-Program Compiler in Java
 

Quick Product Overview

SpinCore Technologies has developed a simple pulse programming language 
where the commands are in the general form (delay, output_pattern). The 
accompanied Java-written program, ISACompiler2.exe reads, parses, and 
compiles a pulse program (text) file, generates machine code, and sends 
the data to the PulseBlaster™ board through the ISA bus. A sample program 
file, Sample.nmr is included with this distribution.

 Program Flow Chart 

 
 
 

Figure 4. Flowchart of the Java Pulse Program Compiler
ProgramFile: A disk text file that stores the pulse program (e.g., 

Sample.nmr).
Parser: It reads in the program file, parses it, and stores the 

result in ProgramCode. 
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ProgramCode: A data structure (class) that stores the pulse program in 

a formatted way.
Compiler: It transfers pulse program into machine code of the 
board.
DestCode: A data structure (class) that stores the destination 

machine code.
ISABus: It sends machine code to the board through the ISA bus.

     Native Windows Program

Because a typical Java program can not directly access hardware ports, 
we implemented the function of writing to a hardware port in the C 
language, and created a dynamic link library which can be called by the 
Java program through JNI.  This associated library file is ISABus.dll.

Configuration File

In order for the program to work with boards configured with different 
ISA-bus port numbers and base clock frequencies, the ISACompiler2.exe 
program automatically reads the current ISA-bus port number and the 
base clock frequency from the disk file “Config.txt”. A typical 
“Config.txt” contains:

configuration of ISACompiler2: 

PortAddress 0x340 // ISA bus port number
BaseFrequency 10// in MHz, base frequency of the board

NOTE: If the “Config.txt” file does not exist, the program will ask 
user to input the ISA-bus port number and base clock frequency via 
keyboard every time the program is evoked.

Java Files

When the Java source code is compiled by javac of JDK, it generates 
appropriate classes, which will run on Java virtual machine. The main 
class is ISACompiler2.class.

Files:
ISACompiler2.class, 
Comm.class, 
Compiler. class, 
PrgCode. class,
PrgCodeLine. class, 
DestData. class, 
DestDataLine. class,
ISABus. class, 
ISACompiler. class, 
MyException. class,
Parser. class
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    Usage

1. The JDK should be correctly installed on the machine.

2. Always put “ISABus.dll”, “Config.txt” and all above “.class” files 
in the same directory.(e.g.,  C:\PulseBlaster\).

3. Go to the above directory where all files reside.

4. (a) To load and run from a program (text) file:

 At system prompt, on the command line, 
type “java ISACompiler2 ProgramFileName", which is case sensitive. 
The ProgramFileName is the name of the file you want to compile and 
run.

    
(b) To stop running program:

At command line, type “java ISACompiler2 -stop" 

(c) To restart a loaded program:

At command line, type “java ISACompiler2 -restart"
    

    Format of the Program File

    ----- Comments block 1: Compiler just ignores it. -------
This is a test header and comment section. I will use it to test 
compiler; DECLARATIONS as it appears below is a keyword that 
can not be used in the comment section

 ----- Delay Definitions: up to 10 delays can be defined as constants. 
They can be referenced as D1, D3, … in the program below
They are expressed in microseconds, assuming a 10 MHz clock-------

Delay Declarations
D0 = 20 ; 
D1 = 5 ;
D2 = 2.2 ;
D3 = 2.3 ;
D4 = 2.4 ;
D5 = 500 ;
D6 = 2.6 ;
D7 = 2.7 ;
D8 = 2.8 ;
D9 = 5000 ;

  ----- Comments block 2: Compiler just ignores it. -------
SECTION is also a keyword when spelled as below and can not be used in 
a comment section Start and Stop commands for the controller are 
implicit at the beginning and end of experiment.

Code will have following structure:
“Delay Output;”
OR “Opcode Address;”  
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  ----- Program. -------
Program Section

D1      0xffffff;  
D5      0x000000;
LOOP 4
 D2      0xffffff;
 D3      0x000000;

      ENDLOOP
Branch 0;

End Program
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5. Pulse Program Compiler in Perl

SpinCore Technologies provides an open source code compiler for their 
Intelligent Pattern Generator designs.  The compiler is broken up into two 
sections, a front-end text-parsing engine, and a back-end, low-layer 
driver engine.  The text parser is written in the Perl programming 
language and allows for the software to run on virtually any major 
operating system5.  The low layer driver code is written in C and is OS 
dependent.  SpinCore currently supports Linux and Windows95/98 operating 
systems.  The driver code is used to send byte code information generated 
by the text parsing engine over the ISA bus to the embedded hardware.

Modification of the source code is permitted, provided that any 
modifications are submitted back to SpinCore to be made available to other 
users.  Submission of code to SpinCore can be made through our website at 
www.spincore.com.

If your institution requires customization of the compiler please contact 
your SpinCore account manager for assistance. 

Nuts and Bolts

 The PulseBlaster™ system is programmed through the use of text files. 
The text files describe the program flow control as well as the operation 
of the output flags generated.  The compiler can be invoked at the command 
prompt of the operating system used.  The format of the command is 
“perl compile [programming file name]”.  ‘Compile’ is the name of the Perl 
script that implements the compiler.  Note: It is possible to configure 
systems to execute the Perl script without the need to invoke the Perl 
command, but implementation of this feature is OS dependent.  The method 
listed above works for all OS’s  

 The compiler expects several formatting conventions.  All delay variables 
must be created in a name space denoted by the prefix ‘d_’ and all the 
flag variables must be created in a name space denoted by the prefix ‘f_’. 
Any alphanumeric text that follows the prefix is a valid name.  There are 
no length limitations to the names so the names can be made descriptive 
and help to self-document the program.  All lines must end in a semicolon. 
This is generally the most overlooked mistake and should be your first 
consideration when debugging a program.  The compiler also recognizes 
comments, which are preceded by the standard C++ comment marker ‘//’.  Any 
text after the comment marker to the end of the current line is ignored.
    

5 For more information on Perl, please refer to www.perl.com or any one of the many reference books written 
on the subject.
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 There are several key words that the parsing engine looks for in addition 
to the name spaces for the variables.  The key words are used for program 
flow control and are as follows:

1. Branch
2. Jump
3. RTS
4. Loop 
5. End Loop

All keywords take an additional input field except RTS.  The text string 
immediately following the Loop and End Loop commands is considered a label 
for that loop.  It is used to identify which Loop and End Loop commands 
should be grouped together.  The string following the Jump command 
instructs the compiler on what address to jump to and is associated with 
another label somewhere within the file.  There are no limitations on how 
far a jump can be made.  The RTS instruction returns from the current 
subroutine being performed by a previous call to Jump.  Since, the return 
address from a subroutine call is pushed onto a stack, no label is needed 
to identify the return address.  The most current entry in the stack must 
be from  the subroutine just exited by the RTS.  The maximum number of 
nested subroutine calls currently possible is hardware dependent.  Please 
see previous sections for the subroutine stack limitations of your 
hardware.

 Flag labels define groups of bits and assign them to a readable 
identifier.  Each label is associated with a particular bit pattern.  The 
labels are listed in the command line and concatenated to form an output 
word by joining the labels with the ‘+’ sign.  The leftmost label 
represents the MSB of the output word while the rightmost label represents 
the LSB. Each flag variable has two fields that must be specified.  First, 
a bit pattern specified in hexadecimal, followed by a comma and the flag 
variable width.  The width specifies the number of bits to be used when 
generating a number.  This way 0,8 can be used to specify that eight bits 
should be set to zero.  Bit definitions do not need to end on byte or 
nibble boundaries, either. A 3-bit definition is just as valid as an 8-bit 
definition.

 The compiler also supports flag lists that are stored in a file.  The 
format for using this functionality is as follows:

f_test  => [filename],7;.
The flag variable on the left provides a reference label to the file with 
the stored information.  The ‘=>’ symbol notifies the compiler that the 
flag variables values will be stored in a file.  Every time the compiler 
comes across the label in a programming file, it reads in the next entry 
in the flag file and inserts its bit pattern in the programming file. 
Note that the number of bits that the flag value represents is still 
specified in the variable declaration and it will be checked for every 
value that is entered from the file.

 The Program Compiler needs to know the clock frequency that is being used 
so that it can correctly generate the programming file.  This is because 
some hardware models support externally supplied user clocks that can vary 
in frequency.  Assignment of the clock frequency is provided with the 
following command format: “Clock Frequency = 10 MHz;”.
 The ISA Bus Address of the hardware design is also variable and must be 
specified to the compiler so that it can properly program the hardware. 
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The format for specifying the ISA Bus Address is as follows: “ISA Card 
Address = 340;”.  Notice that the port address is specified in hexadecimal.
 The number of flags is also specified for the compiler since this can 
vary between designs.  The flag number is used to ensure that no flag 
field has too many bits specified.  The format of the instruction is as 
follows: “Number of Flags = 24;”.  The compiler will not complain if less 
than the specified number of flags are present.  It will make the 
assumption that these lines were intended to be zero and will fix their 
values automatically.

 It is also important to note that the compiler does no error checking for 
the number of embedded loops and subroutines.  It is expected that the 
user ensure the maximum number of embedded subroutines and loops is never 
exceeded.

Writing a Program

 When writing a program there are a few simple rules to follow and the 
rest is easy.  All program instructions require a delay and flag output 
specification.  Instruction lines that do not contain a delay and flag 
output specification are grouped with either the line directly after or 
before them.  The outputs and delay for the Loop, Branch, and Jump 
commands are all specified on the line immediately following them.  The 
End Loop and RTS commands are linked with the delay and outputs on the 
line specified immediately before them.  Labels can be associated with 
program lines by placing them before a delay value.  The labels must be in 
front of a delay specification line and not a program flow control 
command.  All lines that are not associated with a special program flow 
instruction will be assigned a continue Op Code6.  

Loop Command Syntax
Loop [loop label] [number of time] – all fields required 

End Loop Command Syntax
End Loop [loop label] – all fields required 

Jump Command Syntax 
Jump [subroutine label] – all fields required

RTS Command Syntax 
RTS – no extra fields

Branch Command Syntax 
Branch [branch to label] – all fields required

Delay and Output Specification Syntax
Label d_name f_name1 + f_name2 + ... – the label is optional and number of 

flag fields is optional

6 Long Delay instructions are inserted as needed by the compiler for both program flow control (Jump, Branch, 
etc.) and Continue instructions.
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    Program Code Example

// This is a test header and comment section.
// DECLARATIONS as it appears below is a keyword that can not be 
// used in the comment section.

// Units: Hz, kHz, MHz
Clock Frequency = 10 MHz;

Number of Flags = 24;

// Value specified in hexadecimal
ISA Card Address = 340;

//Delay Declarations
// Units: ns, us, ms, sec, min, hr
D_0 = 0.144 ms; // test the function of comments
D_1=5000 ns; 
D_6 = 11 min;

f_on = FF,8;
f_off = 00,8;
f_dac = 3,7;
f_test =>test.dat,7;
f_sample1 = 1,1;
f_sample2 = 0,1;

///////////////// Program Section ////////////////////////

Top D_1  f_off + f_on + f_dac + f_sample1;
    D_0  f_on + f_off + f_dac + f_sample2;

   Loop One 12;
  D_1  f_sample1 + f_on + f_dac + f_test;

   Loop Two 16;
D_1  f_sample1 + f_on + f_dac + f_test;

   D_0  f_sample1 + f_off + f_dac + f_test;
End Loop Two;

   D_0  f_sample1 + f_off + f_dac + f_test;
End Loop One;

    Branch Top;
     D_6  f_sample1+f_on + f_dac + f_test;
///////////////// End Program ///////////////////////////
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