
Owner’s Manual for the

PulseBlaster™

Intelligent General Purpose

Pulse/Pattern/RF Generation Board

SpinCore Technologies, Inc.
4623 NW 53rd Avenue

Gainesville, Florida 32653, USA
Phone: (352)-271-7383

http://www.spincore.com

www.spincore.com

PulseBlaster

Congratulations and THANK YOU for choosing a design from SpinCore
Technologies, Inc. We appreciate your business. At SpinCore we try to
fully support the needs of our customers, so if you ever need assistance
please contact us and we will strive to provide the necessary help.

© 2000-2008 SpinCore Technologies, Inc. All rights reserved. SpinCore
Technologies, Inc. reserves the right to make changes to the product(s) or
information herein without notice. PulseBlaster™, SpinCore, and the
SpinCore Technologies, Inc. logo are trademarks of SpinCore Technologies,
Inc. All other trademarks are the property of their respective owners.

 11/13/20082

www.spincore.com

PulseBlaster

Contents

Section I: Introduction

 1 Quick Product Overview
 2 Quick Installation Guide

Section II: PulseBlaster™ Design

 1 PulseBlaster™ Design Overview
 2 PulseBlaster™ Machine Language
 3 PulseBlaster™ Control Commands
 4 PulseBlaster™ Board Initialization
 5 ISA Bus Programming Issues
 6 Header/Jumper Information

Section III: Test and Application Software

 1 Test Board Loader and Controller
 2 Understanding Machine Code: Examples
 3 Programming with C/C++: An Example
 4 Pulse Program Compiler in Java
 5 Pulse Program Compiler in Perl

4
6

7
10
14
16
17
19

24
26
28
30
34

 11/13/20083

www.spincore.com

PulseBlaster

1. Quick Product Overview

We are proud to present PulseBlaster™ - our Intelligent Pulse Programmer-
Pattern Generator Board for NMR/MRI/NQR/ICR/Solids and related resonance
and test applications. The entire logic design (excluding output drivers)
is contained in a single silicon chip, qualifying it as a system-on-a-chip
(SOC) design – the industry’s first and only design of this kind.
Implemented on a 0.22 micron, state-of-the-art programmable silicon, its
innovative Very-Long Instruction Word (VLIW) design has many unique and
attractive features such as high speed, small size, low power consumption,
increased functionality, and ease of programming.

Output signals

 PulseBlaster™’s standard model has 24 individually controlled output
bits that are capable of delivering +-25 mA per bit. The outputs can be
set to either the 5 V or 3.3V I/O logic standard. Output signals are
available both on the PC bracket-mounted DB-25 connector and on an
internal, flat-cable header.

Timing Characteristics

 PulseBlaster™’s timing controller can accept either an internal (on-
board) crystal oscillator or an external frequency source of up to 100
MHz. The innovative architecture of the timing controller allows the
processing of either simple timing instructions (delays of up to
4,294,967,296 clock cycles), or double-length timing instructions (up to
2^52 clock cycles long - nearly 2 years with a 100 MHz clock!).
Regardless of the type of timing instruction, the timing resolution
remains constant for any delay – just one clock period (e.g., 10 ns for a
100 MHz clock, or 100 ns for a 10 MHz clock).

The controller has a very short minimum delay cycle – only five clock
periods. This translates to a 50 ns pulse/delay with a 100 MHz clock. It
is so fast that the board can actually be used to generate rf pulses – the

 11/13/20084

Section I: Introduction

www.spincore.com

PulseBlaster
20 MHz (max) update rate can be used for IF testing of some systems, and
even as the rf Larmor frequency of many low-field systems!

Instruction Set

 PulseBlaster™’s design features a set of commands for highly flexible
program flow control. The micro-programmed controller allows for programs
to include branches, subroutines, and loops at up to 16 nested levels –
all this to assist the user in creating dense pulse programs that cycle
through repetitious events, especially useful in numerous multidimensional
spectroscopy and imaging applications.

Optional Memory Chip

 The internal, on-chip, memory space for the system-on-a-chip design is
512 80-bit words. In addition, the board features an optional memory chip
to allow for execution of much larger programs. The optional memory chip
provides 32k words of program space - a number that is much larger than
necessary for even the most complex pulse programs today. The trade-off
for using the additional on-board memory is that the minimum delay
increases from five to seven clock periods.

External triggering and cascading

 PulseBlaster™ can be triggered and/or reset externally via dedicated
hardware lines. The two separate lines combine the convenience of
triggering (e.g., in cardiac gating) with the safety of the "stop/reset"
line. The required control signals are “active low” (or short to ground).
The design also allows for multiple boards to be synchronized, easily
extending the 24-bit output pattern to 48 bits or more. If a larger number
of output bits is necessary, e.g., 64, 128 or 256, SpinCore can customize
the design to suit the individual needs. Please contact SpinCore for
details.

Summary

 PulseBlaster™ is a versatile, high-performance pulse/pattern generator
operating at speeds of up to 100 MHz and capable of generating delays
ranging from 50 ns to over 2 years per instruction. It can accommodate
pulse programs with highly flexible control commands of up to 32k program
words. Its 24 high-current output bits are independently controlled and
5/3.3 V user-selectable.

 11/13/20085

www.spincore.com

PulseBlaster

2. Quick Installation Guide
PulseBlaster™ boards are ready to use out of the box. After unpacking,

they can be installed on your computer in any available ISA slot. Please
shut down your computer and turn the power off when installing the board,
and use a screw to fasten the bracket.

PulseBlaster™ boards are factory pre-configured to operate with the
following default settings:

ISA Base Address: 0x340.
 Clock Oscillator: Internal, installed on board; clock frequency as per

customer specification
Output levels: TTL
Memory select: Internal, on-chip.

These settings can be changed using on-board jumpers. Please consult
Chapter 6 in Section II for details regarding the jumpers’ information and
location.

No software or drivers of any kind are required to install the board. The
board can be used on computers running any operating system that supports
the Industry Standard Architecture (ISA) bus, including DOS, Windows, QNX,
and Linux. Section III of this manual, “Test and Application Programs,”
describes sample programs that can be used to program the board for
operation under Microsoft DOS/Windows operating systems. The C code
described in this manual can also be compiled under most other operating
systems as well. SpinCore’s web site http://www.spincore.com/ serves as a
repository of the software described in this manual.

 11/13/20086

http://www.spincore.com/

www.spincore.com

PulseBlaster

1. PulseBlaster™ Design Overview

The PulseBlaster™ device is an intelligent pulse/pattern generation unit.
The intelligence of the PulseBlaster™ comes from an embedded
microprogrammed controller core (uPC). The uPC is able to execute
instructions that allow it to control program flow. This means that the
PulseBlaster™ understands Operational Control Codes, Op Codes, and will
execute them much the same way a general-purpose microprocessor does. The
PulseBlaster™’s microcontroller is different from the general-purpose
microprocessor in that it does not contain an arithmetic logic unit (ALU)
and is incapable of doing mathematical or logical calculations.

Figure 1. Block diagram of PulseBlaster™ design.

 11/13/20087

Output
Register

Buffer

(24 Lines)

Section II: PulseBlaster™ Design

www.spincore.com

PulseBlaster

Figure 1 presents a block diagram of PulseBlaster™ processor and the
board. The major blocks are the memory, both internal to the processor
chip and external to the chip (optional, on board), the ISA Bus
Controller, the Delay Counter, the Output Register, and the micro-
programmed controller uPC. The clock oscillator and the output buffers are
external to the processor. The entire board is in the PC-XT form factor.

The benefit of the uPC core is the increased code density achieved when a
program outputs a repetitious pattern. A potential disadvantage of a uPC
design is that it takes time for the uPC to make decisions on program flow
and forces a longer minimum delay cycle time over some other types of
designs. However, by carefully designing the uPC and retaining only the
most critical Op Codes, the latency of the uPC can be kept to a minimum.
In the PulseBlaster™ design, the minimum delay cycle latency is 5 system
clock cycles. The maximum system clock speed is, currently, 100 MHz.
Note: When external memory is used, the minimum delay cycle is 7 clock
cycles long.

The uPC core uses two stacks1 in order to control program flow. The first
stack, the Subroutine Return Address Stack, is used to hold the return
address of the currently executing subroutine. This stack is 16 addresses
deep, implying that there can be no more than 16 embedded subroutine
calls. This does not mean that there can be no more than 16 subroutine
calls in a program. It means that the user may have at most 16
consecutive subroutine calls without ever returning from a subroutine.
Every time a call to a subroutine is encountered, the next address in
memory is pushed2 onto this stack, and whenever a return from subroutine
command is encountered by the uPC the return address is popped3 off this
stack.

The second stack used is the Loop Count Stack. This stack is used to
hold the loop count for any loop command encountered by the uPC. This
stack also has 16 locations and this means that no more than 16 embedded
loops can occur at any given time. It should be noted that Long Delay
instructions are implemented by using the loop control structure. For
programs using very long delay values, the greatest number of embedded
loops is 15, since the Long Delays instruction will use one location on
the loop stack. Any long delay value that is not prime (and a couple of
other special cases) can be implemented with the one instruction loop.
All other rare cases must be implemented in a 2-instruction set.

Timing control is an integral part of pattern generation. The
PulseBlaster™ features an embedded 32 bit delay counter. This counter
provides the delay tracking capabilities needed and generates an I/O
strobe that clocks data through the output latches at the correct time.
Maximum delay times for a given clock rate be calculated by multiplying
the clock period by 2^32. When using a Long Delay instruction the maximum
delay value is the clock period multiplied by 2^52.

The minimum delay cycle for the design depends on whether internal or
external memory is being used for program memory. The minimum delay
possible when using internal memory is 5 clock cycles. There is an
1 A stack is a first-in-last-out (FILO) buffer.
2 Pushing an item onto the stack simply means that it is being added to the buffer.
3 Popping an item from the stack simply means that it is being removed from the buffer.

 11/13/20088

www.spincore.com

PulseBlaster
increased latency of 2 clock cycles when using external memory. If the
internal memory is used, the maximum number of instruction words is 512.
When using extremely long delay values, the worst case minimum number of
instruction words is around 256 (implying that every delay takes 2
instruction words). The penalty in minimum delay latency incurred by
using external memory is offset by the depth that the memory provides for
program space. Using the external memory provides the user with 32k (32 *
1024) words of program memory space. The external memory depth is
required when long non-repeating patterns require generation.

The ISA Bus Controller, IBC, serves as an interface between a PC and the
PulseBlaster™ Processor. It handles programming the system memory, arming
the device trigger, and can generate trigger and reset signals for the
board.

 11/13/20089

www.spincore.com

PulseBlaster

2. PulseBlaster™ Machine Language

 Programming architecture and word definition
 The PulseBlaster™ processor implements an 80-bit wide Very-Long

Instruction Word (VLIW) architecture. The 80-bit word has specific
bits/fields dedicated to specific purposes, and every word should be
viewed as a single instruction of the micro-controller. The execution time
of instructions can be varied and is under (self) control by one of the
fields of the instruction word. All instructions have the same format and
bit length, and all bit fields have to be filled. Figure 2 shows the
instruction word’s fields and bit definitions.

Bit Definitions for the 80-bit Very-Long Instruction Word (VLIW)
--

 Output Pattern:79-56 | Data Field:55-36 | OP Code:35-32 | Delay Count:31-0

 (24 bits) (20 bits) (4 bits) (32 bits)
--

Figure 2. Bit definitions for instruction (machine) word of PulseBlaster™.

 The individual fields, starting from the least-significant bit, are
interpreted as follows:

Delay Count – the lowest order bits of the command word - 32 bits long.
This value is specified in clock cycles. The internal counter
used in the PulseBlaster design counts down from the value
specified in this field down to zero. There are two basic
rules that need to be observed when specifying the delay
count in clock cycles.

1) The minimum delay value entered must be greater than or
equal to 2 cycles; and

2) The delay value generated equals the number of clock
cycles entered *PLUS* three cycles. The extra three
cycles come from overhead in the timing control logic.

 11/13/200810

www.spincore.com

PulseBlaster
OP Code - is 4 bits long. The following Op codes are allowed:

 binary hex Mnemonic

 0000 0 Continue
 0001 1 Stop
 0010 2 Loop
 0011 3 End Loop
 0100 4 Jump SR (Jump to Subroutine)
 0101 5 Return SR (Return from Subroutine
 0110 6 Branch (or just Jump, unconditionally)
 0111 7 Long Delay

Table 1. Operational Codes (OP Codes) for the PulseBlaster microcontroller
 Most of the Op Codes are similar to instructions for general-purpose
processors and have the same effect on program flow as in a general-
purpose processor. In the following subsection, all PulseBlaster™ Op
Codes will be explained in details.

 The CONTINUE instruction has no effect on program flow. The next
instruction executed will be the one immediately following the current
instruction in memory. The basic effect of the CONTINUE command is to
delay a specified amount of time and generate a particular output
pattern.

 The STOP command is used to tell the uPC that the end of a program
has been reached and that it should remain in an idle state until it
has been reset or received another trigger. This instruction does not
take any data.

 The LOOP command denotes the beginning of a loop structure in a
program and forces the uPC to push the data field of the instruction
word onto the Loop Stack the first time it is encountered in a
program. The user does not have to define register locations for the
loop count values because the uPC automatically allocates resources if
they are available. If too many loops are nested together, the
outside loop will not function correctly and the design fails. There
is no checking in hardware for the error condition caused by pushing
too many loop count values onto the loop stack. It is the user’s (or
program compiler’s) responsibility to ensure that no more than 16
loops are ever nested together.

 The END LOOP command forces the uPC to decrement the most recent
loop count in the Loop Stack. It also redirects the program counter4

to the top of the loop if the loop has not been completed. If the
loop has been completed, the program continues to the next instruction
in memory. The address of the top of the loop is specified as a data
field associated with the END LOOP Op Code.

 The JUMP to SUBROUTINE command forces the uPC to modify the program
counter and redirects the execution of the next command to be at the
location specified in the data field of the instruction word. This
command also forces the uPC to push the return address (next address
after the JUMP SR command) onto the Subroutine Return Address Stack.

4 The program counter is a register that tracks the address of the next command to be executed.

 11/13/200811

www.spincore.com

PulseBlaster
Allocation of all resources for saving the return address is handled
by the uPC and the user does not need to specify how resources should
be allocated. The number of nested subroutines can not exceed 16
calls. If more the 16 calls are made in a row, the outer subroutine
call(s) will return to address 0. No error checking is done in
hardware to determine if the stack has overflowed. It is the user’s
responsibility to ensure that no more than 16 subroutines are active
at the same time.

 The RETURN from SUBROUTINE command instructs the uPC to pop the
most recent return address off the Subroutine Return Address Stack and
execute that address as the next program instruction. There is no
data field associated with this command.

 The BRANCH instruction changes the program counter’s value. It
specifies a new location in memory to start execution from on the next
instruction. The location is specified as a data field associated
with the BRANCH instruction. Note: this case is similar to the JUMP to
SUBROUTINE command except no return address is pushed onto the stack.

 The LONG DELAY instruction implements a true zero overhead loop
instruction. This command will generate a single particular output
pattern for long periods of time by looping and executing the same
instruction many times. The delay period can be calculated by
multiplying the instruction ‘delay length’ by the (‘loop length’ + 2).
The pipelined nature of the uPC adds two to the loop length. It
should also be noted that the minimum number of loops is three and the
minimum value that can be loaded into the loop counter is one.

Data Field – is 20 bits wide. Its meaning depends on the OP Code, as
follows:

- If the OP Code is BRANCH, the corresponding data field must
contain the exact address of the instruction to be executed next,
i.e., where the program jumps to. NOTE: the first line of the
machine code has the address zero, i.e., binary 00000; the second
line has the binary address 00001, etc.

- If the OP Code is LOOP, the corresponding data field entered must
equal the number of loops desired *MINUS* one. Programming the Data
Field with this value in conjunction with the LOOP Op Code provides
the desired number of loops in the output.

- If the OP Code is END LOOP, the corresponding data field entered
must be the exact address of the instruction where the originating
LOOP instruction resides. NOTE: the first line of the machine code
has the address zero, i.e., binary 00000; the second line has the
binary address 00001, etc.

- If the OP Code is JUMP SR, the corresponding data field must
contain the exact (Note as above) address of the instruction where
the subroutine starts.

- If the OP Code is LONG DELAY, the corresponding Data Field must
contain the (number of loops desired – 2). This instruction is a

 11/13/200812

www.spincore.com

PulseBlaster
zero-overhead loop, and its execution time equals the {delay} times
the (Data_field+2).

- All other instructions ignore the Data Field.

Output Pattern - this field specifies the 24 output bits. The output
pattern is maintained for the entire duration of the
current machine word, as specified in the delay count
field (plus three cycles).

 11/13/200813

www.spincore.com

PulseBlaster

3. PulseBlaster™ Control Commands

Table 2 lists the control commands that are used by a host computer in
order to program and use the PulseBlaster™ Pulse/Pattern Generator Board
over the ISA Bus. The explanation of the individual control codes
follows. The control code values are specified in offsets from the board’s
Base Address. The program in Section III, Chapter 3 “Programming with
C/C++: An Example” can be consulted for information on how to implement
control commands.

Control Code Function
0 Device Reset
1 Start Trigger
2 Load Number of Bytes per Word
3 Select Memory Device
4 Clear Address Counter
5 Not Currently Used
6 Load Memory
7 Programming Finished

Table 2. PulseBlaster™ Control Commands

DEVICE_RESET: This command allows the PC software to reset the
PulseBlaster™. After reset, the pattern generator can not be re-armed
until the IBC has been re-initialized. The DEVICE_RESET command does not
have any data associated with it

START_TRIGGER: This command can be used to start execution of a machine
program residing in PulseBlaster™’s memory. NOTE: the PulseBlaster™
always starts program execution from address zero. The START_TRIGGER
signal is only accepted, however, after the board has been initialized.
The START_TRIGGER command does not have any data associated with it.

LOAD_NUMBER_OF_BYTES_PER_WORD: This command is used to facilitate
programing of the memory used by the PulseBlaster™. The ISA Bus

 11/13/200814

www.spincore.com

PulseBlaster
Controller (IBC) accomplishes this task by using the Bytes per Word
Counter to keep track of memory device width. It can handle memory
devices from 2 to 15 bytes wide. The counter is loaded with the data byte
sent over the ISA Bus with the Control Code to load the counter. The data
value used to load the counter is also saved in a control register to
allow the Bytes per Word Counter to be reloaded automatically. The Bytes
per Word Counter ensures the correct number of bytes are used to
reconstruct the memory word. By using this implementation, memory widths
of any practical size can be used without changing the firmware design.
It also allows for programming internal memory of unusually large width to
facilitate the use of VLIW architecture, a design approach that is used in
the PulseBlaster™.

SELECT MEMORY DEVICE: This instruction is used to specify which memory
device to write to, either the embedded or external memory. In the
PulseBlaster™ design, writing a zero data byte with this instruction
programs the internal memory of the PulseBlaster™. If a ‘one’ is sent in
the associated data byte, the external memory is programmed.

CLEAR ADDRESS COUNTER: The Address Counter is used to manufacture the
memory address. The Address Counter is not loadable; it can only be
cleared and started at zero. It is not possible to load a particular
section of memory. All loads must start from either the beginning of
memory, or wherever the Address Counter left off.

LOAD_MEMORY: This instruction is used to specify data that should be used

to program the memory used by the device. Since the ISA data is taken
only one byte at a time, the IBC must reconstruct the data word to be
programmed. The data word is reconstructed in the IBC most significant
byte first.

PROGRAMMING FINISHED: This instruction enables the pattern generator of
the PulseBlaster™. This instruction prevents the pattern generator from
accepting a hardware trigger or software start command before the device
has been programmed. Once the design has been programmed, the PROGRAMMING
FINISIHED command must be sent to arm the device for operation. After the
pattern generator has been armed, any hardware trigger or software start
command will cause the system to start operation. The PulseBlaster™ can be
reset by issuing the DEVICE_RESET command. This will internally clear the
PROGRAMMING FINISHED instruction and prevent the pattern generator from
operating again until the IBC has been re-initialized.

 11/13/200815

www.spincore.com

PulseBlaster

4. PulseBlaster™ Board Initialization

Initialization of the PulseBlaster™ Board for operation involves a
minimum of four steps. The steps are as follows:

1) Send LOAD NUMBER OF BYTES PER WORD instruction.
2) Send SELECT MEMORY DEVICE instruction.
3) Send CLEAR ADDRESS COUNTER instruction.

3.A. (Optional) loading data to memory.
4) Send PROGRAMMING FINISHED instruction.

If these four commands are not sent from a PC, the PulseBlaster™ board
will not run as desired. All four instructions are required as an attempt
to ensure that the device has been programmed before it can be armed.
Loading of the memory with data has to be performed between steps three
and four, step 3.A above. Upon reset, all four instructions must be
executed to restart the device again.

A Sample C code that implements the above commands is presented in
Section III of this Manual, Chapter 3, “Programming with C/C++: An
Example.”

 11/13/200816

www.spincore.com

PulseBlaster

5. ISA Bus Programming Issues

In order for the embedded intelligent pattern generator to operate, the
memory it utilizes needs to be programmed, and appropriate control bytes
have to be sent over the ISA Bus. To accomplish these tasks, a special
controller, called IBC (ISA Bus Controller), was designed as the interface
between a PC and the PulseBlaster™ Pulse/Pattern Generator.

The IBC handles programming the system memory for the pattern generator,
initializes the board, and controls its operation. Once the system memory
has been initialized, the IBC relinquishes control of the memory’s data
and address busses to the pattern generator. While the pattern generator
is running, it has complete control of the memory buses. The IBC does
have the power to reset the pattern generator and re-take control of the
device. This allows for PC software to control the operation of the
PulseBlaster™ Core Processor.

NOTE: The data taken off the ISA Bus is one byte wide - the 16-bit data
capability of the ISA Bus was not used in order to conserve I/O pins on
the microchip. Also, the IBC controller does not have the ability to
write information to the bus. However, if necessary, three pins on
PulseBlaster™’s board, namely RUNNING (J12-10), STOPPED (J12-7), and
SYSTEM_RESET (J12-8) could be used to determine the status of the uPC.

ISA-Bus Base Port Address
Each device on the ISA Bus is mapped to a port address range. The port

address is used to specify that data on the bus is for a particular
peripheral device. The PulseBlaster™ board design has the ability to
change its port address. This ability provides for the fact that other
devices on the bus might have previously claimed certain port address
ranges. Three control lines, running to the J4 header on the PulseBlaster™
card, allow one of eight port address ranges to be selected. The port
address ranges are from the ‘Base Address’ to the ‘Base Address + 7’.
The Base Addresses that can be specified range from 0x260 to 0x360, see
Table 3 in the next chapter “Header/Jumper Information.” The factory pre-
set value is 0x340.

 11/13/200817

www.spincore.com

PulseBlaster
ISA Bus Controller
The ISA Bus Controller uses three control signals from the ISA Bus: AEN,

~IOW, and Bus Clock. The control signals are used to decode the ISA Bus
traffic. The Bus Clock signal is used by the IBC for timing, and it is
completely independent of the system clock of the PulseBlaster™. The AEN
signal is active high and indicates an address is on the bus, and that the
address is from the DMA controller. In order to avoid traffic from the
DMA controller, the IBC looks for this signal to be low. The ~IOW line
specifies that a write (from the PC processors point of view) is
occurring. A write indicates that the data on the bus is destined for a
peripheral device. If both AEN and ~IOW are low, the data on the bus is
being written to a peripheral device specified by the port address on the
ISA Bus. The details of this hardware communication are hidden from the
user standpoint if one uses the C language functions outp() or _outp().

Sending Control Commands over the ISA Bus
Once the on-chip ISA Bus Controller, IBC, finds the correct values for

AEN and ~IOW, the address and data values are latched into control
registers. The address is then decoded to determine if the bus traffic is
addressed to the PulseBlaster™. If the address is in the defined range
for the PulseBlaster™, then the address is used as a Control Command to
drive the operation of the IBC. The IBC has eight distinct Control
Commands - see Table 2. The Control Command values are specified in
offsets from the Base Address. If the Control Command has data associated
with it, the data latched off the ISA Bus is used; else the data buffer
register is ignored.

 11/13/200818

www.spincore.com

PulseBlaster

6. Header/Jumper Information

The PulseBlaster™ board is a configurable system. It allows the user
to set jumpers on several headers on the PC card to select different modes
of operation for the device.

Selecting ISA Bus Address: Header J4, Pins 1-2, 3-4, and 5-6.
 The Base Addresses that can be specified range from 0x260 to 0x360.
The default, factory pre-set value for the ISA PulseBlaster™ board is
0x340. This value can be changed, via jumpers on Header J4, according
to the Table 3.

Base Address
(in Hex)

Jumper Settings – Header J4
Pins 5-6 Pins 3-4 Pins 1-2

300 | | |
320 | | :
340 | : |
260 | : :
280 : | |
270 : | :
290 : : |
360 : : :

Table 3. Board’s ISA-Bus Base Address Selection
(Legend: | jumper across pins, : no jumper)

 (Default Value = 0x340, jumpers 1-2, 5-6).

 11/13/200819

www.spincore.com

PulseBlaster
 Selecting Master Clock Oscillator:

 The Clock Select signal is used to specify where the clock signal
for the system will be coming from. The PulseBlaster™ Board allows
for use of either an on board clock or an externally supplied clock
source. If the signal is left tied high, the on board clock will be
selected, else if the Clock Select line is pulled low through a jumper
to ground, the externally applied clock will be used. (Default Value
is the on board Clock).

 The external clock source should be connected to the on-board SMA5
connector. The connector is terminated with a 50 Ω resistor. The
input signal must also have a DC bias and the lowest voltage generated
by the clock must not be lower than ground. Driving the clock to
negative voltages will damage the input pin on the microchip. The
device can accept 5.0 V volt peak input signals.

 Selecting external memory: Header J12, Pins 1-2

 The internal, on-chip embedded memory can accommodate up to 512
machine words. To accommodate larger programs, up to 32k machine
words, the board has provision for using an optional memory chip. If
equipped, the external, on-board chip can be selected by removing the
jumper across pins #1-2 on header J12. If a board is not equipped
with external memory, these pins must be jumpered.

 Selecting output voltage levels: Headers JPower1 and Jpower2

The output signals are driven by latches/drivers capable of running
off a 5.0-V or 3.3-V supply. The supply voltage for the drivers is
selectable. Table 4, below, lists the configurations for 5.0-V and
3.3-V output driver operation.

5 V Operation
Jumper JPower1-1 across to JPower1-2
Jumper JPower2-1 across to JPower2-2

3.3 V Operation
Jumper JPower1-3 across to JPower1-4
Jumper JPower2-3 across to JPower2-4

Table 4. Output voltage selection
The JPower1 header selects the operating voltage for the output bits
0-15, and JPower2 independently selects the operating voltage for the
output bits 16-23.

 11/13/200820

www.spincore.com

PulseBlaster

 Output Bits - Connector DB-25 (J10) and Header JP9

 The following table lists the output bits for the PulseBlaster™ Pulse
/ Pattern Generator Board.

Signal Location

Bit 0 J10-13
Bit 1 J10-25
Bit 2 J10-24
Bit 3 J10-11
Bit 4 J10-10
Bit 5 J10-22
Bit 6 J10-21
Bit 7 J10-8
Bit 8 J10-7
Bit 9 J10-19
Bit 10 J10-18
Bit 11 J10-5
Bit 12 J10-4
Bit 13 J10-16
Bit 14 J10-15
Bit 15 J10-2
Bit 16 JP9-2
Bit 17 JP9-4
Bit 18 JP9-6
Bit 19 JP9-8
Bit 20 JP9-10
Bit 21 JP9-12
Bit 22 JP9--14
Bit 23 JP9-16
Output Clock J10-1
Running J12-10
Stopped J12-7
System Reset J12-8

Table 5. Output bits and signals of the PulseBlaster™ board.
 Bits 15-0 are grouped on the external DB-25 connector (also marked as
J10) provided for accessing the signals. The rest of the bits, Bits 23-
16, are accessible on an internal IDC header JP9. The table also lists
several additional output signals that are available to the outside world,
as described in the next subsection. All remaining pins on the DB-25 and
JP9 connectors are connected to the ground.

 11/13/200821

www.spincore.com

PulseBlaster

 Using external trigger/reset lines - Header J5, Pins #3 and #5.

 HW_Trigger is a signal that is pulled high by default. When a falling
edge is detected (e.g., when shorting pins 3-4), it initiates code
execution. This trigger will also restart execution of a program from
the beginning of the code if it is detected after the design has
reached an idle state. The idle state could have been created either
by reaching the STOP Op Code of a program, or by the detection of the
HW_Reset signal.

 The HW_Reset line is pulled high by a resistor. It can be used to
halt the execution of a program by pulling it low (e.g., by shorting
pins 5-6). When the signal is pulled low during the execution of a
program, the controller resets itself back to the beginning of the
program. Program execution can be resumed by either a software start
command or by a hardware trigger.

 Additional Output Signals – Connector DB-25 and Header J12.
The internal Output Clock signal is available to the outside world,
as it is tied to the DB25 connector, pin #1. It is the clock signal
used to latch patterns in the output buffers. This clock has been
configured to have a relatively slow slew rate so as to avoid noise
problems on a transmission line. This clock is not a 50% duty cycle
clock. The width of the high part of the signal is one system clock
period.

System Reset – Header J12 pin #8 is used to indicate (when low) to
the external world that the uPC controller is in a reset state. It
can be used in larger systems to monitor the state of the
PulseBlaster™ design.

A signal that is similar to System Reset is the Running signal,
header J12 pin #10. It is driven high when the uPC is executing
code. It is taken low when the uPC has entered either a reset of
idle state.

The Stopped signal, header J12 pin #7, is the last signal used to
indicate the state of the uPC. Stopped is asserted when the uPC has
encountered the stop command while normally executing code. This
signal informs the external world that the uPC has successfully
executed its program and has halted operation.

 11/13/200822

www.spincore.com

PulseBlaster

 Header and Signal Locations
The location of the relevant headers and connectors on the
PulseBlaster™ board is presented in Figure 3.

 J4 J5 Jpower2 JP9 J12 J_Power1 J10(DB-25)

Figure 3. PulseBlaster™ Board – header/connector locations.

 11/13/200823

www.spincore.com

PulseBlaster

1. Test Board Loader and Controller
SpinCore has developed a simple program that can be used under Windows™

to quickly evaluate the PulseBlaster board under Windows95/98. The
program, called NewISA, can load and execute several embedded test pulse
programs. It can load any hex-coded pulse program from a text file. The
screenshots below show the simple user interface to the board. The
program can be launched from the command line or by double-clicking the
corresponding icon.

Upon program’s launch, the first screen prompts the user to enter the
board’s base address and clock frequency:

Figure 4. The initial screenshot of the simple test board loader and controller program called NewISA.

 11/13/200824

Section III: Test and Application
Software

www.spincore.com

PulseBlaster
Upon entering the base-port address and the clock frequency, the program
allows the user to execute several default pulse programs/waveforms. They
include a 1 MHz waveform and a train of three 0.5 us pulses.

Figure 5. The main screenshot of the NewISA program for quick test and control of PulseBlaster™.

The pulse programs execute automatically upon selection. Any running
pulse program can be stopped and restarted again with the S and R command,
respectively. The NewISA program also allows the user to load and execute
any hexadecimally-coded pulse program contained in the text file called
(by default) Program.txt. An example Program.txt file could contain

0xffffff 0x000000 0x00000007
0x000000 0x000006 0x000000f1

This simple pulse program will execute a single pulse (the first line)
followed by a delay (the second line). For more on machine programming,
please see the next chapter “Understanding Machine Code: Examples.”

 11/13/200825

www.spincore.com

PulseBlaster

2. Understanding Machine-Code:
Examples

To use PulseBlaster™, no machine-code knowledge is necessary if one
relies on application programs that take care of generating the
appropriate byte streams. The test and application programs that are
supplied by SpinCore and distributed with PulseBlaster™ can be used to
generate nearly any pulse program that can be imagined, without knowing
anything about Op Codes, Data Fields, word length, etc. However,
knowledge of the machine-code programming is essential in writing a
custom pulse program compiler.

To help understand the major machine-programming concepts, this chapter
presents two simple machine-code programs that illustrate some of the
information pertinent to machine programming. Those programs can be
loaded and executed using the loader program described in the preceding
chapter of this Manual, “Test Board Loader and Controller.” They can also
be loaded with the C/C++ program described in the next chapter.

Sample 1 – A simple two-line program in machine code
 Just two machine instructions can generate a useful waveform - a single
pulse followed by a delay. If the delays are identical in both
instructions, a square waveform will result, as in the following code,
with explanation:

Output | Data Field | OpCode | Delay

ffffff 00000 0 00000007 <- first instruction (80 bits)
 000000 00000 6 00000007 <- second instruction (80 bits)

Delays: The number of clock “ticks” in both instructions is 0x00000007,
decimal seven, resulting in the total duration of each instruction equal
to ten clock cycles (three clock cycles are always inserted,
automatically, to account for timer controller overhead). Thus, if the
clock frequency is 10 MHz, each instruction will last 1 us, generating a
0.5 MHz waveform on all 24 outputs of the PulseBlaster™

Opcodes: The two Op Codes used are Continue (in the first instruction,
the value equals 0x0) and Branch (second instruction, value 0x6).

Data Fields: The data field in the first instruction is irrelevant,
since the associated Op Code is Continue (0x0). The data field in the
second instruction is the address 0x00000, i.e., the address pointing to

 11/13/200826

www.spincore.com

PulseBlaster
the first instruction in the program (program lines are counted starting
from 0, 1, 2, etc.).

Output bits: The 24 output bits are “all ones” during the first machine
word (0xffffff) – they form the first half of the square wave (or the
pulse), and “all zeros” (0x000000) during the second machine word.

Sample 2 – A simple three-line program in machine code
A simple three-line program can generate a number of useful patterns.

For example, we will illustrate a sequence of 11 pulses followed by a
delay, running continuously.

Output | Data Field | OpCode | Delay

ffffff 0000a 2 00000007 <- (start loop, loop 11 times)
000000 00000 3 00000007 <- (end the current loop)
000000 00000 6 00000030 <- (go back to the beginning)

Delays: The first and second instructions: 7 clock “ticks,” (plus three
inserted) – they will correspond to a train of equidistant pulses (square
wave-like). The third instruction will last longer, for 0x30 clock
“ticks” (plus three inserted).

Op Codes: The first Op Code is LOOP (0x2), the Op Code in the second
instruction is END_LOOP (0x3), and the Op Code in the third instruction
is BRANCH (0x6). Thus, the program will loop first (lines one and two),
then it will continue to line three, and then it will branch (jump) back
to the first line.

Data Fields: The data field in the first instruction specifies the
number of loops. The entered value is 0x0a, i.e., decimal 10. Thus, the
program will execute 11 loops (this is because the accompanied loop
counter counts down to 0). The data field in the second line is the top
address of the current loop structure, i.e., where the corresponding LOOP
command resides (0x00000). The data in the third instruction is the
address where the program execution should continue next, i.e., the first
line (0x00000).

Output bits: The 24 output bits are “all ones” during the first machine
word (0xffffff) – they form the pulses that can be seen on an
oscilloscope. The second line is “all zeros” (0x000000) – these will be
the gaps between the pulses. The third line is “all zeros” again, for
the duration of the last interval representing the delay between the
groups of 11 pulses.

 11/13/200827

www.spincore.com

PulseBlaster

3. Programming with C/C++: An
Example

 The C source code below illustrates how the programming and loading of
the board can be accomplished. It can be used to quickly test the
PulseBlaster™ board. The program initiates the board, loads two 80-bit
wide machine words, and starts the pulse program. NOTE: Under Linux, the
_outp(address, value) commands have to be replaced with
outb(value,address) pairs, and the program has to be run by root.

Example Code

//
//
// This script can be used to test the pulse programmer board.
// First, it initiates the on-chip ISA Bus Controller.
// Then it programs the board’s memory with two machine words.
// Afterwards, it issues one more control word - programming completed.
// And finally, it executes the start command.
// The resulting waveform should be a square wave.
//
// The script assumes that the board is at the address 0x340
//
// NOTE: Each machine word is 80-bit wide. Word organization:
//
// Output bits | Address/Loop counter | Op Code | Delay
// (24 bits) (20 bits) (4 bits) (32 bits)

// Copyright 1999 SpinCore Technologies, Inc. http://www.spincore.com
//
//

 11/13/200828

www.spincore.com

PulseBlaster

#include<stdio.h>
#include<conio.h>

#define port 0x340 // This is the default base address of the board

void main(){

// Initialize the PulseBlaster™ board
_outp(port,0); // Device Reset
_outp(port+2,0x0A); // Load Number of Bytes per Word (10)
_outp(port+3,0x00); // Select Memory Device
_outp(port+4,0x55); // Clear Address Counter (value irrelevant)

 // Load two 80-bit-long machine word instructions
// Instruction 1 - will last 4+3 clock ticks --------------------------
_outp(port+6,0xff);// First eight bits of the output pattern
_outp(port+6,0xff);// Output bits continue
_outp(port+6,0xff); // Output bits – total of 24 bits – all “ones”

_outp(port+6,0x00); // First part of the data field
_outp(port+6,0x00); // value irrelevant for the Op Code Continue
_outp(port+6,0x00); // Op_Code - 4 LSBs is 0000 = Continue

_outp(port+6,0x00); // First eight bits of the Delay Value
_outp(port+6,0x00);// Delay Value bits continue
_outp(port+6,0x00); // Delay Value bits continue
_outp(port+6,0x04); // Delay Value - in clock ticks – total 32 bits

// Instruction 2 – will last 4+3 clock ticks ----------------------------
_outp(port+6,0x00); // Output pattern
_outp(port+6,0x00); // Output pattern
_outp(port+6,0x00); // Output pattern – total of 24 bits, all “zeros”

_outp(port+6,0x00);
_outp(port+6,0x00); // Branch Address – points to first line, numbered 0
_outp(port+6,0x06); // Op_Code is 4 LSBs – will cause to program to jump

_outp(port+6,0x00);
_outp(port+6,0x00);// Delay Value
_outp(port+6,0x00);
_outp(port+6,0x04);

// Signal the End of programming
 _outp (port+6, 0x00); //
_outp(port+7,7); // Programming Finished

// Put the device in run mode
_outp(port+1,7); //Trigger – starts the pulse program execution

}

 11/13/200829

www.spincore.com

PulseBlaster

4. Pulse-Program Compiler in Java

Quick Product Overview

SpinCore Technologies has developed a simple pulse programming language
where the commands are in the general form (delay, output_pattern). The
accompanied Java-written program, ISACompiler2.exe reads, parses, and
compiles a pulse program (text) file, generates machine code, and sends
the data to the PulseBlaster™ board through the ISA bus. A sample program
file, Sample.nmr is included with this distribution.

 Program Flow Chart

Figure 4. Flowchart of the Java Pulse Program Compiler
ProgramFile: A disk text file that stores the pulse program (e.g.,

Sample.nmr).
Parser: It reads in the program file, parses it, and stores the

result in ProgramCode.

 11/13/200830

Start

Parser

Compiler

DestCode

ISABus

Stop

Program
Code

Pulse Program
File

www.spincore.com

PulseBlaster
ProgramCode: A data structure (class) that stores the pulse program in

a formatted way.
Compiler: It transfers pulse program into machine code of the
board.
DestCode: A data structure (class) that stores the destination

machine code.
ISABus: It sends machine code to the board through the ISA bus.

 Native Windows Program

Because a typical Java program can not directly access hardware ports,
we implemented the function of writing to a hardware port in the C
language, and created a dynamic link library which can be called by the
Java program through JNI. This associated library file is ISABus.dll.

Configuration File

In order for the program to work with boards configured with different
ISA-bus port numbers and base clock frequencies, the ISACompiler2.exe
program automatically reads the current ISA-bus port number and the
base clock frequency from the disk file “Config.txt”. A typical
“Config.txt” contains:

configuration of ISACompiler2:

PortAddress 0x340 // ISA bus port number
BaseFrequency 10// in MHz, base frequency of the board

NOTE: If the “Config.txt” file does not exist, the program will ask
user to input the ISA-bus port number and base clock frequency via
keyboard every time the program is evoked.

Java Files

When the Java source code is compiled by javac of JDK, it generates
appropriate classes, which will run on Java virtual machine. The main
class is ISACompiler2.class.

Files:
ISACompiler2.class,
Comm.class,
Compiler. class,
PrgCode. class,
PrgCodeLine. class,
DestData. class,
DestDataLine. class,
ISABus. class,
ISACompiler. class,
MyException. class,
Parser. class

 11/13/200831

www.spincore.com

PulseBlaster
 Usage

1. The JDK should be correctly installed on the machine.

2. Always put “ISABus.dll”, “Config.txt” and all above “.class” files
in the same directory.(e.g., C:\PulseBlaster\).

3. Go to the above directory where all files reside.

4. (a) To load and run from a program (text) file:

 At system prompt, on the command line,
type “java ISACompiler2 ProgramFileName", which is case sensitive.
The ProgramFileName is the name of the file you want to compile and
run.

(b) To stop running program:

At command line, type “java ISACompiler2 -stop"

(c) To restart a loaded program:

At command line, type “java ISACompiler2 -restart"

 Format of the Program File

 ----- Comments block 1: Compiler just ignores it. -------
This is a test header and comment section. I will use it to test
compiler; DECLARATIONS as it appears below is a keyword that
can not be used in the comment section

 ----- Delay Definitions: up to 10 delays can be defined as constants.
They can be referenced as D1, D3, … in the program below
They are expressed in microseconds, assuming a 10 MHz clock-------

Delay Declarations
D0 = 20 ;
D1 = 5 ;
D2 = 2.2 ;
D3 = 2.3 ;
D4 = 2.4 ;
D5 = 500 ;
D6 = 2.6 ;
D7 = 2.7 ;
D8 = 2.8 ;
D9 = 5000 ;

 ----- Comments block 2: Compiler just ignores it. -------
SECTION is also a keyword when spelled as below and can not be used in
a comment section Start and Stop commands for the controller are
implicit at the beginning and end of experiment.

Code will have following structure:
“Delay Output;”
OR “Opcode Address;”

 11/13/200832

www.spincore.com

PulseBlaster

 ----- Program. -------
Program Section

D1 0xffffff;
D5 0x000000;
LOOP 4
 D2 0xffffff;
 D3 0x000000;

 ENDLOOP
Branch 0;

End Program

 11/13/200833

www.spincore.com

PulseBlaster

5. Pulse Program Compiler in Perl

SpinCore Technologies provides an open source code compiler for their
Intelligent Pattern Generator designs. The compiler is broken up into two
sections, a front-end text-parsing engine, and a back-end, low-layer
driver engine. The text parser is written in the Perl programming
language and allows for the software to run on virtually any major
operating system5. The low layer driver code is written in C and is OS
dependent. SpinCore currently supports Linux and Windows95/98 operating
systems. The driver code is used to send byte code information generated
by the text parsing engine over the ISA bus to the embedded hardware.

Modification of the source code is permitted, provided that any
modifications are submitted back to SpinCore to be made available to other
users. Submission of code to SpinCore can be made through our website at
www.spincore.com.

If your institution requires customization of the compiler please contact
your SpinCore account manager for assistance.

Nuts and Bolts

 The PulseBlaster™ system is programmed through the use of text files.
The text files describe the program flow control as well as the operation
of the output flags generated. The compiler can be invoked at the command
prompt of the operating system used. The format of the command is
“perl compile [programming file name]”. ‘Compile’ is the name of the Perl
script that implements the compiler. Note: It is possible to configure
systems to execute the Perl script without the need to invoke the Perl
command, but implementation of this feature is OS dependent. The method
listed above works for all OS’s

 The compiler expects several formatting conventions. All delay variables
must be created in a name space denoted by the prefix ‘d_’ and all the
flag variables must be created in a name space denoted by the prefix ‘f_’.
Any alphanumeric text that follows the prefix is a valid name. There are
no length limitations to the names so the names can be made descriptive
and help to self-document the program. All lines must end in a semicolon.
This is generally the most overlooked mistake and should be your first
consideration when debugging a program. The compiler also recognizes
comments, which are preceded by the standard C++ comment marker ‘//’. Any
text after the comment marker to the end of the current line is ignored.

5 For more information on Perl, please refer to www.perl.com or any one of the many reference books written
on the subject.

 11/13/200834

http://www.spincore.com/
http://www.perl.com/

www.spincore.com

PulseBlaster
 There are several key words that the parsing engine looks for in addition
to the name spaces for the variables. The key words are used for program
flow control and are as follows:

1. Branch
2. Jump
3. RTS
4. Loop
5. End Loop

All keywords take an additional input field except RTS. The text string
immediately following the Loop and End Loop commands is considered a label
for that loop. It is used to identify which Loop and End Loop commands
should be grouped together. The string following the Jump command
instructs the compiler on what address to jump to and is associated with
another label somewhere within the file. There are no limitations on how
far a jump can be made. The RTS instruction returns from the current
subroutine being performed by a previous call to Jump. Since, the return
address from a subroutine call is pushed onto a stack, no label is needed
to identify the return address. The most current entry in the stack must
be from the subroutine just exited by the RTS. The maximum number of
nested subroutine calls currently possible is hardware dependent. Please
see previous sections for the subroutine stack limitations of your
hardware.

 Flag labels define groups of bits and assign them to a readable
identifier. Each label is associated with a particular bit pattern. The
labels are listed in the command line and concatenated to form an output
word by joining the labels with the ‘+’ sign. The leftmost label
represents the MSB of the output word while the rightmost label represents
the LSB. Each flag variable has two fields that must be specified. First,
a bit pattern specified in hexadecimal, followed by a comma and the flag
variable width. The width specifies the number of bits to be used when
generating a number. This way 0,8 can be used to specify that eight bits
should be set to zero. Bit definitions do not need to end on byte or
nibble boundaries, either. A 3-bit definition is just as valid as an 8-bit
definition.

 The compiler also supports flag lists that are stored in a file. The
format for using this functionality is as follows:

f_test => [filename],7;.
The flag variable on the left provides a reference label to the file with
the stored information. The ‘=>’ symbol notifies the compiler that the
flag variables values will be stored in a file. Every time the compiler
comes across the label in a programming file, it reads in the next entry
in the flag file and inserts its bit pattern in the programming file.
Note that the number of bits that the flag value represents is still
specified in the variable declaration and it will be checked for every
value that is entered from the file.

 The Program Compiler needs to know the clock frequency that is being used
so that it can correctly generate the programming file. This is because
some hardware models support externally supplied user clocks that can vary
in frequency. Assignment of the clock frequency is provided with the
following command format: “Clock Frequency = 10 MHz;”.
 The ISA Bus Address of the hardware design is also variable and must be
specified to the compiler so that it can properly program the hardware.

 11/13/200835

www.spincore.com

PulseBlaster
The format for specifying the ISA Bus Address is as follows: “ISA Card
Address = 340;”. Notice that the port address is specified in hexadecimal.
 The number of flags is also specified for the compiler since this can
vary between designs. The flag number is used to ensure that no flag
field has too many bits specified. The format of the instruction is as
follows: “Number of Flags = 24;”. The compiler will not complain if less
than the specified number of flags are present. It will make the
assumption that these lines were intended to be zero and will fix their
values automatically.

 It is also important to note that the compiler does no error checking for
the number of embedded loops and subroutines. It is expected that the
user ensure the maximum number of embedded subroutines and loops is never
exceeded.

Writing a Program

 When writing a program there are a few simple rules to follow and the
rest is easy. All program instructions require a delay and flag output
specification. Instruction lines that do not contain a delay and flag
output specification are grouped with either the line directly after or
before them. The outputs and delay for the Loop, Branch, and Jump
commands are all specified on the line immediately following them. The
End Loop and RTS commands are linked with the delay and outputs on the
line specified immediately before them. Labels can be associated with
program lines by placing them before a delay value. The labels must be in
front of a delay specification line and not a program flow control
command. All lines that are not associated with a special program flow
instruction will be assigned a continue Op Code6.

Loop Command Syntax
Loop [loop label] [number of time] – all fields required

End Loop Command Syntax
End Loop [loop label] – all fields required

Jump Command Syntax
Jump [subroutine label] – all fields required

RTS Command Syntax
RTS – no extra fields

Branch Command Syntax
Branch [branch to label] – all fields required

Delay and Output Specification Syntax
Label d_name f_name1 + f_name2 + ... – the label is optional and number of

flag fields is optional

6 Long Delay instructions are inserted as needed by the compiler for both program flow control (Jump, Branch,
etc.) and Continue instructions.

 11/13/200836

www.spincore.com

PulseBlaster

 Program Code Example

// This is a test header and comment section.
// DECLARATIONS as it appears below is a keyword that can not be
// used in the comment section.

// Units: Hz, kHz, MHz
Clock Frequency = 10 MHz;

Number of Flags = 24;

// Value specified in hexadecimal
ISA Card Address = 340;

//Delay Declarations
// Units: ns, us, ms, sec, min, hr
D_0 = 0.144 ms; // test the function of comments
D_1=5000 ns;
D_6 = 11 min;

f_on = FF,8;
f_off = 00,8;
f_dac = 3,7;
f_test =>test.dat,7;
f_sample1 = 1,1;
f_sample2 = 0,1;

///////////////// Program Section ////////////////////////

Top D_1 f_off + f_on + f_dac + f_sample1;
 D_0 f_on + f_off + f_dac + f_sample2;

 Loop One 12;
 D_1 f_sample1 + f_on + f_dac + f_test;

 Loop Two 16;
D_1 f_sample1 + f_on + f_dac + f_test;

 D_0 f_sample1 + f_off + f_dac + f_test;
End Loop Two;

 D_0 f_sample1 + f_off + f_dac + f_test;
End Loop One;

 Branch Top;
 D_6 f_sample1+f_on + f_dac + f_test;
///////////////// End Program ///////////////////////////

 11/13/200837

