PulseBlaster

[image: image3.png]O
SinCore

Technologies, Inc.

[image: image4.jpg]

PulseBlaster™
PCI Board Rev. 01

Owner’s Manual

[image: image5.png]C3copyright microsoft Corp 1981-1999.

< - \winpows\pesktop\downloads

Models:

PB24-100-PCI

PB24-100-32k-PCI

SpinCore Technologies, Inc.

http://www.spincore.com

Congratulations and thank you for choosing a design from SpinCore Technologies, Inc.

We appreciate your business!

At SpinCore we try to fully support the needs of our customers. If you are in need of assistance, please contact us and we will strive to provide the necessary support.

© 2000-2005 SpinCore Technologies, Inc. All rights reserved.
SpinCore Technologies, Inc. reserves the right to make changes to the product(s) or information herein without notice. PulseBlasterDDS™, PulseBlaster™, SpinCore, and the SpinCore Technologies, Inc. logos are trademarks of SpinCore Technologies, Inc. All other trademarks are the property of their respective owners.

SpinCore Technologies, Inc. makes every effort to verify the correct operation of the equipment. This equipment version is not intended for use in a system in which the failure of a SpinCore device will threaten the safety of equipment or person(s).
Table of Contents

4I. Introduction

Product Overview
4
Board Architecture
5
Block Diagram
5
Output signals
5
Timing characteristics
5
Instruction set
6
External triggering
6
Summary
6
Specifications
6
TTL Specifications
6
Pulse Parameters
6
Pulse Program Control Flow (Common)
6
II. Installation
7
Installing the PulseBlaster Driver
7
Testing Control of the PulseBlaster
8
III. Programming the PulseBlaster
9
Instruction Set Architecture
9
Machine-Word Definition
9
Breakdown of 80-bit Instruction Word
9
Using C Functions to Program the PulseBlaster
11
Example Use of C Functions
12
IV. Connecting to the PulseBlaster Board
14
Connector Information
14
DB-25 and JP300 - TTL Output Signal Bits
14
Header JP100
14
Appendix I: Sample C program
15
Example Program
15
Appendix II: Programming the PulseBlaster Using Direct Outputs
17
Using DLL Functions to Send Instructions
17
Building Instructions Using the DLL Functions
17
Programming Information
17
Example Program
19
Contact Information
21

I. Introduction

Product Overview

The PulseBlaster(device is an intelligent pulse/pattern generation unit. The intelligence of the PulseBlaster comes from an imbedded microprogrammed controller core (uPC). The controller is able to execute instructions that allow it to control program flow. This means that the PulseBlaster understands Operational Control Codes, Op Codes, and will execute them much the same way as a general-purpose microprocessor does. The PulseBlaster’s microcontroller is different from the general-purpose microprocessor in that it does not contain an arithmetic logic unit (ALU) and is incapable of doing mathematical or logical calculations. However, a unique and distinguishing feature of the PulseBlaster processor is that the execution time of instructions is user programmable. This feature makes the PulseBlaster processor capable of executing complex patterns at greatly varying update rates, ranging from nanoseconds to years per single instruction, with a constant setting accuracy of just one clock period (e.g., a 10 ns setting accuracy at a 100 MHz clock frequency).

Board Architecture

Block Diagram

Figure 1 presents the general architecture of the PulseBlaster system. The major building blocks are the SRAM memory (both internal and external to the processor), the microcontroller (uPC), the integrated bus controller (IBC), the counter, and the output buffers. The entire logic design, excluding output buffers, is contained on a single silicon chip, making it a System-on-a-Chip design. User control to the system is provided through the integrated bus controlled over the PCI bus.
[image: image1.png]RAM

RAM Data Bus —
—
Addr. Bus 4
Contr. Bus —
Output
IBC Counter uPC Sub. Reg.
Loop Reg.

ISA Bus

Clock Oscillator

Figure 1: PulseBlaster board architecture

Output signals

The PulseBlaster comes with 24 digital output signal lines. The 24 individually controlled digital (TTL/CMOS) output bits are capable of delivering (25 mA per bit and have an output voltage of 3.3V. These signals are available on the PC bracket-mounted DB-25 connector (16 channels) and an on-board IDC two-row header connector (the remaining 8 channels).

Timing characteristics

PulseBlaster’s timing controller can accept either an internal (on-board) crystal oscillator or an external frequency source of up to 100 MHz. The innovative architecture of the timing controller allows the processing of either simple timing instructions (delays of up to 232 = 4,294,967,296 clock cycles), or double-length timing instructions (up to 252 clock cycles long – nearly 2 years with a 100 MHz clock!). Regardless of the type of timing instruction, the timing resolution remains constant for any delay – just one clock period (e.g., 10 ns for a 100 MHz clock).

The core-timing controller has a very short minimum delay cycle – only five clock periods for internal memory (512 words) models. This translates to a 50 ns pulse/delay/update with a 100 MHz clock. The external memory models (up to 32k words) have a nine clock-period minimum instruction cycle.

Instruction set

PulseBlaster’s design features a set of commands for highly flexible program flow control. The micro-programmed controller allows for programs to include branches, subroutines, and loops at up to 8 nested levels – all this to assist the user in creating dense pulse programs that cycle through repetitious events, especially useful in numerous multidimensional spectroscopy and imaging applications.

External triggering

PulseBlaster can be triggered and/or reset externally via dedicated hardware lines. The two separate lines combine the convenience of triggering (e.g., in cardiac gating) with the safety of the "stop/reset" line. The required control signals are “active low” (or short to ground).

Summary

PulseBlaster is a versatile, high-performance pulse/pattern TTL signal generator operating at speeds of up to 100 MHz and capable of generating pulses/delays/intervals ranging from 50 ns to over 2 years per instruction. It can accommodate pulse programs with highly flexible control commands of up to 32k program words. Its high-current output logic bits are independently controlled with a voltage of 3.3 V.

Specifications

TTL Specifications

· 24 individually controlled digital output lines (TTL levels)

· variable pulses/delays for every TTL line

· 25 mA output current per TTL line

· output lines can be combined to increase the max. output current

Pulse Parameters

· 50 ns shortest pulse/interval for 512 memory-words models at 100 MHz

· 90 ns shortest pulse/interval for 32k memory words models at 100 MHz.

· 2 years longest pulse/interval

· 10 ns pulse/interval resolution (at 100 MHz)

· 32k instructions max. memory space (512 instructions for internal memory models)

· external triggering and reset – TTL levels

Pulse Program Control Flow (Common)

· loops, nested 8 levels deep

· 20 bit loop counters (max. 1,048,576 repetitions)

· subroutines, nested 8 levels deep

· wait for trigger – 8 clock cycle latency (80ns at 100 MHz), adjustable to 2 years in duration

· 5 MHz max. re-triggering frequency

II. Installation

Installing the PulseBlaster Driver

For operating systems other than Windows 98 and XP, please contact sales@spincore.com
For Windows 98 and XP:

1. Go to http://www.pulseblaster.com/CD/PulseBlaster/PCI/PB02PC/ and download PB02PC.zip.

2. Unzip the files to their own directory.

3. Turn off your computer.

4. Insert the PulseBlaster board into an empty PCI slot.

5. Turn on your computer.

Windows 98:

6. After booting, an “Add New Hardware Wizard” dialog box will appear. Click the Next Button.

7. Select Search for the best driver for your device (Recommended) and click the Next button.

8. Select Specify a location and click the Browse… button.

9. Browse to the folder you created when downloading the PB02PC.zip and click the OK button.

10. You will return to the previous screen. Now, click the Next button.

11. Windows is now ready to install the PulseBlaster driver. When you see the following screen, click the Next button.

12. Windows will now copy the necessary files to your PC. When the process completes, click Finish.

Windows XP:

6. After booting, an “Add New Hardware Wizard” dialog box will appear. Choose “Install from a specific location” and click the Next Button.

7. Select Search for the best driver for your in these locations. Click the browse button and navigate to the folder you created when downloading the drivers and click on the windows_drivers directory and click the OK button.

8. Click the Next button.

9. Click the Continue Anyway button.

10. Windows will now copy the necessary files to your PC. When the process completes, click Finish.

You are now ready to test control of the PulseBlaster board!
Testing Control of the PulseBlaster

1. Open an MS-DOS window in the directory of the unzipped files.

2. Run the included “1Hz_square_100MHz_clock.exe” for 100 MHz clock model or

 “1Hz_square_50MHz_clock.exe” for 50 MHz clock model

 The board should now toggle all output bits at frequency 1 Hz. The initial state is “all ON.”

3. Run the included “1kHz_square_100MHz_clock.exe” for 100 MHz clock or

 “1kHz_square_50MHz_clock.exe” for 50 MHz clock

 The board should now toggle all output bits at frequency 1 kHz. The initial state is “all ON.”

The PulseBlaster board is now ready for use!
III. Programming the PulseBlaster

Instruction Set Architecture

Machine-Word Definition

The PulseBlaster pulse timing and control processor implements an 80-bit wide Very Long Instruction Word (VLIW) architecture. The VLIW memory words have specific bits/fields dedicated to specific purposes, and every word should be viewed as a single instruction of the micro-controller. The maximum number of instructions that can be loaded to on-board memory is 32k. The execution time of instructions can be varied and is under (self) control by one of the fields of the instruction word – the shortest being five clock cycles (for 512 memory-word models) and the longest being 2^52 clock cycles. All instructions have the same format and bit length, and all bit fields have to be filled. Figure 3 shows the fields and bit definitions of the 80-bit instruction word.

Bit Definitions for the 80-bit Instruction Word (VLIW)
 Output/Control Word | Data Field | OP Code | Delay Count

 (24 bits) (20 bits) (4 bits) (32 bits)

Figure 3: Bit definitions of the 80-bit instruction/memory word

Breakdown of 80-bit Instruction Word

The 80-bit VLIW is broken up into 4 sections

1. Output Pattern and Control Word - 24 bits

2. Data Field - 20 bits

3. OP Code - 4 bits

4. Delay Count - 32 bits
Output Pattern and Control Word

Please refer to Table 1 for output pattern and control bit assignments of the 24-bit output/control word.

Bit #

Bit #
Function

23
Header JP300 pin 1
11
Output Connector DB25 pin 5

22
Header JP300 pin 3
10
Output Connector DB25 pin 18

21
Header JP300 pin 5
9
Output Connector DB25 pin 19

20
Header JP300 pin 7
8
Output Connector DB25 pin 7

19
Header JP300 pin 9
7
Output Connector DB25 pin 8

18
Header JP300 pin 11
6
Output Connector DB25 pin 21

17
Header JP300 pin 13
5
Output Connector DB25 pin 22

16
Header JP300 pin 15
4
Output Connector DB25 pin 10

15
Output Connector DB25 pin 2
3
Output Connector DB25 pin 11

14
Output Connector DB25 pin 15
2
Output Connector DB25 pin 24

13
Output Connector DB25 pin 16
1
Output Connector DB25 pin 25

12
Output Connector DB25 pin 4
0
Output Connector DB25 pin 13

Table 1: Output Pattern and Control Word Bits

Data Field and Op Code

Please refer to Table 2 for information on the available operational codes (OpCode) and the associated data field functions (the data field's function is dependent on the Op Code)

Op Code #
Inst
Inst_data
Function

0
CONTINUE
Ignored
Program execution continues to next instruction

1
STOP
Ignored
Stop execution of program (*Note all TTL values remain from previous instruction, and analog outputs turn off)

2
LOOP
Number of desired loops. This value must be greater than or equal to 1.
Specify beginning of a loop. Execution continues to next instruction. Data used to specify number of loops

3
END_LOOP
Address of beginning of loop
Specify end of a loop. Execution returns to begging of loop and decrements loop counter.

4
JSR
Address of first subroutine instruction
Program execution jumps to beginning of a subroutine

5
RTS
Ignored
Program execution returns to instruction after JSR was called

6
BRANCH
Address of next instruction
Program execution continues at specified instruction

7
LONG_DELAY
Number of desired loops. This value must be greater than or equal to 2.
For long interval instructions. Data field specifies a multiplier of the delay field. Execution continues to next instruction

8
WAIT
Ignored
Program execution stops and waits for software or hardware trigger. Execution continues to next instruction after receipt of trigger. The latency is equal to the delay value entered in the WAIT instruction line plus a fixed delay of 6 clock cycles.

Table 2: Op Code and Data Field Description
Delay Count

The value of the Delay Count field (a 32-bit value) determines how long the current instruction should be executed. The allowed minimum value of this field is 0x6 for the 32k memory models and 0x2 for the internal-memory models. The timing controller has a fixed delay of three clock cycles and the value that one enters into the Delay Count field should account for this inherent delay.

Using C Functions to Program the PulseBlaster

A series of functions have been written to control the board and facilitate the construction of pulse program instructions.

In order to use these functions, the DLL (pbd02pc.dll), the library file (pbd02pc.lib), the header files (pbd02pc.h and pbdfuncs.h), and source file (pbdfuncs.cpp) must be in the working directory of your C compiler
.

int pb_init();

Initializes PulseBlaster board. Needs to be called before calling any functions using the PulseBlaster. Returns a negative number on an error or 0 on success.

int pb_close();

Releases PulseBlaster board. Needs to be called as last command in pulse program. Returns a negative number on an error or 0 on success.

void set_clock(double clock_freq);

Used to set the clock frequency of the board. The variable clock_frequency is specified in MHz when no units are entered. Valid units are MHz, kHz, and Hz. The default clock value is 50MHz. You only need to call this function if you are not using a –50 board.

int start_programming(int device);
Used to initialize the system to receive programming information. It accepts a parameter referencing the target for the instructions. The only alid value for device is PULSE_PROGRAM, It returns a 0 on success or a negative number on an error.

int pb_inst(int flags, int inst, int inst_data, double length);
Used to send one instruction of the pulse program. Should only be called after start_programming(PULSE_PROGRAM) has been called. It returns a negative number on an error, or the instruction number upon success. If the function returns –99, an invalid parameter was passed to the function. Instructions are numbered starting at 0.

int flags – determines state of each TTL output bit. Valid values are 0x0 to 0x3FF. For
example, 0x010 would correspond to bit 7 being on, and all other bits being off.

int inst – determines which type of instruction is to be executed. Please see Table 2 for details.

int inst_data – data to be used with the previous inst field. Please see Table 2 for details.

int length – duration of this pulse program instruction, specified in ns.

int stop_programming();
Used to tell that programming the board is complete. Board execution cannot start until this command is received. It returns a 0 on success or a negative number on an error.

int start_pb();
Once board has been programmed, this instruction will start execution of pulse program. It returns a 0 on success or a negative number on an error.

int stop_pb();
Stops output of board. Analog output will return to ground, and TTL outputs will remain in the state they were in when stop command was received. It returns a 0 on success or a negative number on an error.

Example Use of C Functions

// Example1.cpp

//

// SpinCore Technologies, Inc.

// October 2002

// http://www.spincore.com

//

// The following program code uses C Functions from 'pbdfuncs' to

// generate and execute a pulse sequence on the PulseBlaster

// board.

// Be sure to include the DLL (pbd02pc.dll), the library file

// (pbd02pc.lib), the header files (pbd02pc.h and pbdfuncs.h), and

// source file (pbdfuncs.cpp) in the working directory of your C

// compiler.

#include <stdio.h>

#include "pbdfuncs.h"

#include "pbdfuncs.cpp"

void main(void)

{

pb_init(); // Locates & Initializes the PulseBlaster Board

int start;

set_clock(100); // Set Because the Board Operates at 100MHz

start_programming(PULSE_PROGRAM); // Prepare the Board to Receive

 // Pulse Program Instructions

// Instruction 0 - Continue to instruction 1 in 2us

// Flags = 0xFFFFFF, OPCODE = CONTINUE

start = pb_inst(0xFFFFFF, CONTINUE, 0, .1*ms);

// Instruction 1 - Continue to instruction 2 in 0.1ms

// Flags = 0x0, OPCODE = CONTINUE

pb_inst(0x0, CONTINUE, 0, 0.1*ms);

// Instruction 2 - Branch to "start" (Instruction 0) in 0.1s

// Flags = 0x0, OPCODE = BRANCH, Target = start

pb_inst(0x0, BRANCH, start, 0.1*ms);

stop_programming();

 // Finished Sending Instructions

start_pb();

 // Run the Program

pb_close();

 // Release Control of the

 // PulseBlaster board

}

A more complex program using C Functions is provided in Appendix I.
IV. Connecting to the PulseBlaster Board

Connector Information

DB-25 and JP300 - TTL Output Signal Bits

Outputs TTL signals generated by the user’s Program. Please consult the table below for bit assignments.

DB-25 Pin Assignments

JP300 Pin Assignments

Pin#
Bit#
Pin#
Bit#

Pin#
Bit#
Pin#
Bit#

1
GND
14
GND

1
23
9
19

2
15
15
14

2
GND
10
GND

3
GND
16
13

3
22
11
18

4
12
17
GND

4
GND
12
GND

5
11
18
10

5
21
13
17

6
GND
19
9

6
GND
14
GND

7
8
20
GND

7
20
15
16

8
7
21
6

8
GND
16
GND

9
GND
22
5

10
4
23
GND

11
3
24
2

12
GND
25
1

13
0

Table 3: Output bits and signals of the PulseBlaster
Header JP100

This is an input connector, for hardware triggering (HW_Trigger) and resetting (HW_Reset).

HW_Trigger is pulled high by default, and pin 1 is active (pin 2 = GND). When a falling edge is detected (e.g., when shorting pins 1-2), it initiates code execution. This trigger will also restart execution of a program from the beginning of the code if it is detected after the design has reached an idle state. The idle state could have been created either by reaching the STOP Op Code of a program, or by the detection of the HW_Reset signal. When the WAIT Op Code is used in the pulse program, the HW_Trigger will cause the program to continue to the next instruction.

HW_Reset is pulled high by default, and pin 3 is active (pin 4 = GND). It can be used to halt the execution of a program by pulling it low (e.g., by shorting pins 3-4). When the signal is pulled low during the execution of a program, the controller resets itself back to the beginning of the program. Program execution can be resumed by either a software start command or by a hardware trigger.

Appendix I: Sample C program

Example Program

// Example2.cpp

//

// SpinCore Technologies, Inc.

// October 2002

// http://www.spincore.com

//

// The following program code uses C Functions from ‘pbdfuncts’ to

// generate and execute a pulse sequence on the PulseBlaster board.

// Be sure to include the DLL (pbd02pc.dll), the library file

// (pbd02pc.lib), the header files (pbd02pc.h and pbdfuncs.h), and source // file (pbdfuncs.cpp) in the working directory of your C compiler
.

#include <stdio.h>

#include "pbdfuncs.h"

#include "pbdfuncs.cpp"

void main(void)

{

// Located and Initialize Control of the PulseBlaster

if (pb_init() != 0)

printf("--- Error Initializing PulseBlaster ---\n");

// Set clock frequency

set_clock(50);

//Begin pulse program

start_programming(PULSE_PROGRAM);

int start, loop, sub; // define instruction labels

sub = 5; // Since we are going to jump forward in our program, we

// need to define this variable by hand. Instructions

// start at 0 and count up

// Instruction format

// int pb_inst(int flags, int inst, int inst_data, int length)

// Instruction 0 - Jump to Subroutine at Instruction 4 in 1us

start = pb_inst(0xFFFFFF,JSR,sub,1*us);

// Instruction 1 - Beginning of Loop (Loop 3 times). Continue to

// next instruction in 1us

loop = pb_inst(0x0,LOOP,3,1*us);

// Instruction 2 - End of Loop. Return to beginning of loop or

// continue to next instruction in 1us

pb_inst(0x0,END_LOOP,loop,1*us);

// Instruction 3 - Stay here for (5*1us) then continue to

// next instruction

pb_inst(0x0,LONG_DELAY,5,1*us);

// Instruction 4 - Branch to "start" (Instruction 0) in 1us

pb_inst(0x0,BRANCH,start,1*us);

// Instruction 5 - Continue to next instruction in 2us

pb_inst(0x0,CONTINUE,0,2*us);

// Instruction 6 - Return from Subroutine to Instruction 1 in 2us

pb_inst(0x0,RTS,0,2*us);

// End of programming registers and pulse program

stop_programming();

// Start execution of the pulse program

start_pb();

pb_close();

}

Appendix II: Programming the PulseBlaster Using Direct Outputs

If you do not wish to use the provided C functions, you can take advantage of the PBD02PC_outp() function in your own applications. An explanation of using this function to program the board is included below.

Using DLL Functions to Send Instructions

The provided driver DLL, pbd02pc.dll, provides three functions necessary for programming the PulseBlaster:

int PBD02PC_Init();
This function locates and initializes the PulseBlaster PCI board. It returns a 0 upon successful completion, or a negative number for an error.

int PBD02PC_outp(unsigned short address, int data);
This function sends 8 bits of data to the PCI board, at a specified address offset. (Only the lowest 8 bits of the integer value are sent)

int PBD02PC_Close();
This function releases control of the PulseBlaster PCI board. It returns a 0 upon successful completion, or a negative number for an error.

Building Instructions Using the DLL Functions

· To send instructions to the PulseBlaster, the programmer must first call the PBD02PC_Init() function to locate and initialize the PulseBlaster for sending instructions

· Instructions are then build using the PBD02PC_outp(unsigned short address, int data) function, 8 bits at a time. For example, 10 PBD02PC_outp function calls are made to construct one 80-bit instruction.

· Finally, the PBD02PC_Close() instruction is called to signal an end to programming, and to release control of the PulseBlaster.
Programming Information

Initialization of the PulseBlaster for operation involves a minimum of four steps. The steps are as follows:

1) Send LOAD NUMBER OF BYTES PER WORD instruction.

2) Send SELECT PERIPHERAL DEVICE instruction.

3) Send CLEAR ADDRESS COUNTER instruction.

4) Loading data to memory.*

5) Send PROGRAMMING FINISHED instruction.

* Once the board has been programmed, this step is optional. If you are just restarting the pulse program after a STOP command or an HARDWARE_RESET has stopped the program, you can skip this step during re-initialization.

If these five commands are not sent from a PC, the PulseBlaster will not run as desired. All five instructions are required as an attempt to ensure that the device has been programmed before it can be armed. The first time the system is used, the loading of the memory with data has to be performed. Upon reset, four instructions must be executed to restart the device again.

WE for Peripherals: This register is used to select the peripheral that is to be programmed. The value of this register that is used to select program memory is always zero and this is the default value for the register. A complete listing of the values and the associated hardware that can be programmed when appropriately set is listed below in Table A1.1. By selecting 0xFF for this value, no device is selected and the initial value of the output flags may be set. (*Note that the clock signal to the FF must still be transitioned, which may be accomplished by writing to the base output port + 5 twice in succession.)

[image: image2.wmf]WE Register

Value (hex)

Program Memory

0

Change Flags Only

FF

Table A1.1: Peripheral List

CLEAR ADDRESS COUNTER: The Address Counter is used to manufacture the memory address. The Address Counter is not loadable; it can only be cleared and started at zero. It is not possible to load a particular section of memory. All loads must start from either the beginning of memory, or wherever the Address Counter left off.

Flag Initialization Strobe: The output flags of the PulseBlaster can be programmed while the device is in a reset state. This is useful to initialize flags after powering-up and to reset flags to a known state if a program must be aborted. Writing to the Flag Initialization Strobe register will toggle the line used to clock data into the output latches.

LOAD_MEMORY: This instruction is used to specify data that should be used to program the memory used by the device. Since the incoming data is taken only one byte at a time, the IBC must reconstruct the data word to be programmed. The data word is reconstructed in the IBC most significant byte first.

PROGRAMMING FINISHED: This instruction enables the pattern generator of the PulseBlaster. This instruction prevents the pattern generator from accepting a hardware trigger or software start command before the device has been programmed. Once the design has been programmed, the PROGRAMMING FINISIHED command must be sent to arm the device for operation. After the pattern generator has been armed, any hardware trigger or software start command will cause the system to start operation. The PulseBlaster can be reset by issuing the DEVICE_RESET command. This will internally clear the PROGRAMMING FINISHED instruction and prevent the pattern generator from operating again until the IBC has been re-initialized.

In order to select each of the commands mentioned about, you write to the port base + offset. A table of each offset’s meaning is included below.

Offset
Command
Function

0
DEVICE_RESET
Stops Pulse Program

1
DEVICE_START
Starts Pulse Program (only when in initialized state)

2
SELECT_BPW
Selects number of BPW (10 for instructions)

3
SELECT_DEVICE
Using Table 2, selects internal device to be programmed

4
CLEAR_ADDRESS_COUNTER
Resets internal memory address counter

5
FLAG_STROBE
Strobes output clock signal to preset digital outputs

6
DATA_TRANSFER
Data to be written to internal device

7
PROGRAMMING_FINISHED
Sets device in initialized state

Table A1.2: Port Offset Command Functions
Example Program

The following is an example of the output sequence to program the PulseBlaster. You must use the PBD02PC_outp(addr, data) function from the provided DLL in order to use this method.

//
Initialization:

PBD02PC_outp(0,0);

//(Issue device reset)

PBD02PC_outp(2,4);

//(Select number of bytes per word)

PBD02PC_outp(3,0xFF);

//(Select device to program (Flag initial values))

PBD02PC_outp(4,0);

//(Reset address counter)

//
Set initial flag values

//
Values for this example are "0x000000f0"

PBD02PC_outp(6,0);

//(Data transfer)

PBD02PC_outp(6,0);

//(Data transfer)

PBD02PC_outp(6,0);

//(Data transfer)

PBD02PC_outp(6,0xF0);

//(Data transfer)

PBD02PC_outp(5,0);

//(Clock data into external buffer)

PBD02PC_outp(5,0);

//(Return clock signal to low)

//
Pulse Program Setup

PBD02PC_outp(0,0);

//(Issue Device Reset)

PBD02PC_outp(2,10);

//(Select number of bytes per word)

PBD02PC_outp(3,0);

//(Select device to program (RAM))

PBD02PC_outp(4,0);

//(Reset address counter)

//Send pulse program

PBD02PC_outp(6,0x18);

//(Byte 9 of first instruction)

PBD02PC_outp(6,0xFF);

//(Byte 8 of first instruction)

PBD02PC_outp(6,0xFF);

//(Byte 7 of first instruction)

PBD02PC_outp(6,0x00);

//(Byte 6 of first instruction)

PBD02PC_outp(6,0x00);

//(Byte 5 of first instruction)

PBD02PC_outp(6,0x00);

//(Byte 4 of first instruction)

PBD02PC_outp(6,0x00);

//(Byte 3 of first instruction)

PBD02PC_outp(6,0x00);

//(Byte 2 of first instruction)

PBD02PC_outp(6,0x00);

//(Byte 1 of first instruction)

PBD02PC_outp(6,0x07);

//(Byte 0 of first instruction)

PBD02PC_outp(6,0xXX);

//(Byte 9 of second instruction)

/*

Continue this process for all instructions. The

explanation of how to create the 80 bit instruction

words is included in the section “Programming the PulseBlaster ->

Instruction Set Architecture -> Machine Word Definition”.

When finished with all instructions, continue with the sequence below.

*/

PBD02PC_outp(7,0);

//(Programming Finished)

/*

Only execute the following command when you are ready

for the program to start running.

*/

PBD02PC_outp(1,0);

//(Start pulse program)
Contact Information

Phone

(352) 281-4892

FAX

(352) 371-8679

Email

sales@spincore.com

Web

http://www.spincore.com/

Product URL:

http://www.pulseblaster.com/CD/PulseBlaster/PCI/PBD02PC

PCI Bus

� These functions and library files have been generated and tested with the MS Visual Studio 6 environment. Support and updated functions/DLLs for other environments may be provided upon request if available.

� These functions and library files have been generated and tested with the MS Visual Studio 6 environment. Support and updated functions/DLLs for other environments may be provided upon request if available.

17

4/7/2005

_1099320038.xls
Sheet1

		WE Register		Value (hex)

		Program Memory		0

		Change Flags Only		FF

