

PulseBlaster™
PCI Board Rev. 01
Owner’s Manual

Models:
PB24-100-PCI PB24-100-32k-PCI

SpinCore Technologies, Inc.
http://www.spincore.com

http://www.spincore.com/

PulseBlaster

Congratulations and thank you for choosing a design from
SpinCore Technologies, Inc.

We appreciate your business!

At SpinCore we aim to fully support the needs of our customers. If you
are in need of assistance, please contact us and we will strive to provide

the necessary support.

© 2000-2006 SpinCore Technologies, Inc. All rights reserved.
SpinCore Technologies, Inc. reserves the right to make changes to the product(s) or information herein without notice.
PulseBlasterDDS™, PulseBlaster™, SpinCore, and the SpinCore Technologies, Inc. logos are trademarks of SpinCore Technologies,
Inc. All other trademarks are the property of their respective owners.

SpinCore Technologies, Inc. makes every effort to verify the correct operation of the equipment. This equipment version is not intended
for use in a system in which the failure of a SpinCore device will threaten the safety of equipment or person(s).

http://www.spincore.com 5/19/20062

http://www.spincore.com/

PulseBlaster

Table of Contents

 I. Introduction... 5

Product Overview ... 5

Board Architecture ... 5
Block Diagram ... 5
Output signals.. 6
Timing characteristics... 6
Instruction set... 6
External triggering ... 6
Summary.. 6

Specifications.. 7
TTL Specifications.. 7
Pulse Parameters... 7
Pulse Program Control Flow (Common)... 7

II. Installation... 8

Installing the PulseBlaster Driver ... 8

III. Programming the PulseBlaster... 8

The PulseBlaster Interpreter.. 8

IV. Connecting to the PulseBlaster Board.. 9

Connector Information.. 9
DB-25 and JP300 - TTL Output Signal Bits... 9
Header JP100.. 9

Appendix I: Controlling the PulseBlaster with Spinapi............................. 10

Instruction Set Architecture... 10
Machine-Word Definition.. 10
Breakdown of 80-bit Instruction Word.. 10

About Spinapi.. 12

Using C Functions to Program the PulseBlaster... 12
Example Use of C Functions.. 14

http://www.spincore.com 5/19/20063

http://www.spincore.com/

PulseBlaster
Appendix II: Sample C Program.. 15

Contact Information.. 17

http://www.spincore.com 5/19/20064

http://www.spincore.com/

PulseBlaster

 I. Introduction
Product Overview

The PulseBlaster device is an intelligent pulse/pattern generation unit. The intelligence of the
PulseBlaster comes from an imbedded microprogrammed controller core (uPC). The controller is able to
execute instructions that allow it to control program flow. This means that the PulseBlaster understands
Operational Control Codes, Op Codes, and will execute them much the same way as a general-purpose
microprocessor does. The PulseBlaster’s microcontroller is different from the general-purpose
microprocessor in that it does not contain an arithmetic logic unit (ALU) and is incapable of doing
mathematical or logical calculations. However, a unique and distinguishing feature of the PulseBlaster
processor is that the execution time of instructions is user programmable. This feature makes the
PulseBlaster processor capable of executing complex patterns at greatly varying update rates, ranging from
nanoseconds to years per single instruction, with a constant setting accuracy of just one clock period (e.g., a
10 ns setting accuracy at a 100 MHz clock frequency).

Board Architecture
Block Diagram

Figure 1 presents the general architecture of the PulseBlaster system. The major building blocks are
the SRAM memory (both internal and external to the processor), the microcontroller (uPC), the integrated
bus controller (IBC), the counter, and the output buffers. The entire logic design, excluding output buffers,
is contained on a single silicon chip, making it a System-on-a-Chip design. User control to the system is
provided through the integrated bus controlled over the PCI bus.

Figure 1: PulseBlaster board architecture

http://www.spincore.com 5/19/20065

PCI Bus

http://www.spincore.com/

PulseBlaster
Output signals

The PulseBlaster comes with 24 digital output signal lines. The 24 individually controlled digital
(TTL/CMOS) output bits are capable of delivering ±25 mA per bit and have an output voltage of 3.3V.
These signals are available on the PC bracket-mounted DB-25 connector (16 channels) and an on-board
IDC two-row header connector (the remaining 8 channels).

Timing characteristics

PulseBlaster’s timing controller can accept either an internal (on-board) crystal oscillator or an
external frequency source of up to 100 MHz. The innovative architecture of the timing controller allows
the processing of either simple timing instructions (delays of up to 232 = 4,294,967,296 clock cycles), or
double-length timing instructions (up to 252 clock cycles long – nearly 2 years with a 100 MHz clock!).
Regardless of the type of timing instruction, the timing resolution remains constant for any delay – just
one clock period (e.g., 10 ns for a 100 MHz clock).

The core-timing controller has a very short minimum delay cycle – only five clock periods for internal
memory (512 words) models. This translates to a 50 ns pulse/delay/update with a 100 MHz clock. The
external memory models (up to 32k words) have a nine clock-period minimum instruction cycle.

Instruction set

PulseBlaster’s design features a set of commands for highly flexible program flow control. The micro-
programmed controller allows for programs to include branches, subroutines, and loops at up to 8 nested
levels – all this to assist the user in creating dense pulse programs that cycle through repetitious events,
especially useful in numerous multidimensional spectroscopy and imaging applications.

External triggering

PulseBlaster can be triggered and/or reset externally via dedicated hardware lines. The two separate
lines combine the convenience of triggering (e.g., in cardiac gating) with the safety of the "stop/reset" line.
The required control signals are “active low” (or short to ground).

Summary

PulseBlaster is a versatile, high-performance pulse/pattern TTL signal generator operating at speeds
of up to 100 MHz and capable of generating pulses/delays/intervals ranging from 50 ns to over 2 years
per instruction. It can accommodate pulse programs with highly flexible control commands of up to 32k
program words. Its high-current output logic bits are independently controlled with a voltage of 3.3 V.

http://www.spincore.com 5/19/20066

http://www.spincore.com/

PulseBlaster
Specifications

TTL Specifications

• 24 individually controlled digital output lines (TTL levels)
• variable pulses/delays for every TTL line
• 25 mA output current per TTL line
• output lines can be combined to increase the max. output current

Pulse Parameters

• 50 ns shortest pulse/interval for 512 memory-words models at 100 MHz
• 90 ns shortest pulse/interval for 32k memory words models at 100 MHz.
• 2 years longest pulse/interval
• 10 ns pulse/interval resolution (at 100 MHz)
• 32k instructions max. memory space (512 instructions for internal memory models)
• external triggering and reset – TTL levels

Pulse Program Control Flow (Common)

• loops, nested 8 levels deep
• 20 bit loop counters (max. 1,048,576 repetitions)
• subroutines, nested 8 levels deep
• wait for trigger – 8 clock cycle latency (80ns at 100 MHz), adjustable to 2 years in duration
• 5 MHz max. re-triggering frequency\

http://www.spincore.com 5/19/20067

http://www.spincore.com/

PulseBlaster

II. Installation
Installing the PulseBlaster Driver

 The PulseBlaster uses the Spinapi driver and control library. The latest version of this driver can
bedownloaded from:

http://www.pulseblaster.com/CD/spinapi/

This URL contains both the driver as well as the most recent installation guide. Please refer to that document
for instructions on how to properly install the drivers.

III. Programming the PulseBlaster

The PulseBlaster Interpreter
The PulseBlaster board is now programmable via the PulseBlaster Interpreter, which is a free

programming utility provided by SpinCore for writing pulse programs. This easy-to-use editor allows you
create, edit, save and run your pulse sequence.

Figure 2: The PulseBlaster Interpreter

Please follow the link below for the most recent installation instructions and documentation:

http://www.pulseblaster.com/CD/spbi/

It is also possible to write pulse programs and control the PulseBlaster with C functions. For more information
on this, please see Appendix I.

http://www.spincore.com 5/19/20068

http://www.spincore.com/
http://www.pulseblaster.com/CD/spbi/
http://www.pulseblaster.com/CD/spinapi/

PulseBlaster

IV. Connecting to the PulseBlaster Board

Connector Information
DB-25 and JP300 - TTL Output Signal Bits

Outputs TTL signals generated by the user’s Program. Please consult the table below for bit
assignments.

DB-25 Pin Assignments JP300 Pin Assignments
Pin# Bit# Pin# Bit# Pin# Bit# Pin# Bit#

1 GND 14 GND 1 23 9 19
2 15 15 14 2 GND 10 GND
3 GND 16 13 3 22 11 18
4 12 17 GND 4 GND 12 GND
5 11 18 10 5 21 13 17
6 GND 19 9 6 GND 14 GND
7 8 20 GND 7 20 15 16
8 7 21 6 8 GND 16 GND
9 GND 22 5

10 4 23 GND
11 3 24 2
12 GND 25 1
13 0

Table 3: Output bits and signals of the PulseBlaster

Header JP100

This is an input connector, for hardware triggering (HW_Trigger) and resetting (HW_Reset).

HW_Trigger is pulled high by default, and pin 1 is active (pin 2 = GND). When a falling edge is
detected (e.g., when shorting pins 1-2), it initiates code execution. This trigger will also restart execution
of a program from the beginning of the code if it is detected after the design has reached an idle state.
The idle state could have been created either by reaching the STOP Op Code of a program, or by the
detection of the HW_Reset signal. When the WAIT Op Code is used in the pulse program, the
HW_Trigger will cause the program to continue to the next instruction.

HW_Reset is pulled high by default, and pin 3 is active (pin 4 = GND). It can be used to halt the
execution of a program by pulling it low (e.g., by shorting pins 3-4). When the signal is pulled low during
the execution of a program, the controller resets itself back to the beginning of the program. Program
execution can be resumed by either a software start command or by a hardware trigger.

http://www.spincore.com 5/19/20069

http://www.spincore.com/

PulseBlaster

Appendix I: Controlling the PulseBlaster with Spinapi
Instruction Set Architecture

Machine-Word Definition

The PulseBlaster pulse timing and control processor implements an 80-bit wide Very Long Instruction
Word (VLIW) architecture. The VLIW memory words have specific bits/fields dedicated to specific
purposes, and every word should be viewed as a single instruction of the micro-controller. The maximum
number of instructions that can be loaded to on-board memory is 32k. The execution time of instructions
can be varied and is under (self) control by one of the fields of the instruction word – the shortest being
five clock cycles (for 512 memory-word models) and the longest being 2^52 clock cycles. All instructions
have the same format and bit length, and all bit fields have to be filled. Figure 3 shows the fields and bit
definitions of the 80-bit instruction word.

Bit Definitions for the 80-bit Instruction Word (VLIW)

 Output/Control Word | Data Field | OP Code | Delay Count
 (24 bits) (20 bits) (4 bits) (32 bits)

Figure 3: Bit definitions of the 80-bit instruction/memory word

Breakdown of 80-bit Instruction Word

The 80-bit VLIW is broken up into 4 sections

1. Output Pattern and Control Word - 24 bits
2. Data Field - 20 bits
3. OP Code - 4 bits
4. Delay Count - 32 bits

http://www.spincore.com 5/19/200610

http://www.spincore.com/

PulseBlaster
Output Pattern and Control Word

Please refer to Table 1 for output pattern and control bit assignments of the 24-bit output/control word.
Bit
#

Bit # Function

23 Header JP300 pin 1 11 Output Connector DB25 pin 5
22 Header JP300 pin 3 10 Output Connector DB25 pin 18
21 Header JP300 pin 5 9 Output Connector DB25 pin 19
20 Header JP300 pin 7 8 Output Connector DB25 pin 7
19 Header JP300 pin 9 7 Output Connector DB25 pin 8
18 Header JP300 pin 11 6 Output Connector DB25 pin 21
17 Header JP300 pin 13 5 Output Connector DB25 pin 22
16 Header JP300 pin 15 4 Output Connector DB25 pin 10
15 Output Connector DB25 pin 2 3 Output Connector DB25 pin 11
14 Output Connector DB25 pin 15 2 Output Connector DB25 pin 24
13 Output Connector DB25 pin 16 1 Output Connector DB25 pin 25
12 Output Connector DB25 pin 4 0 Output Connector DB25 pin 13

Table 1: Output Pattern and Control Word Bits

Data Field and Op Code

Please refer to Table 2 for information on the available operational codes (OpCode) and the associated
data field functions (the data field's function is dependent on the Op Code)

Op Code # Inst Inst_data Function
0 CONTINUE Ignored Program execution continues to next

instruction

1 STOP Ignored
Stop execution of program (*Note all TTL

values remain from previous instruction, and
analog outputs turn off)

2 LOOP
Number of desired loops. This
value must be greater than or

equal to 1.

Specify beginning of a loop. Execution
continues to next instruction. Data used to

specify number of loops

3 END_LOOP Address of beginning of loop
Specify end of a loop. Execution returns to

begging of loop and decrements loop
counter.

4 JSR Address of first subroutine
instruction

Program execution jumps to beginning of a
subroutine

5 RTS Ignored Program execution returns to instruction
after JSR was called

6 BRANCH Address of next instruction Program execution continues at specified
instruction

7 LONG_DELAY
Number of desired loops. This
value must be greater than or

equal to 2.

For long interval instructions. Data field
specifies a multiplier of the delay field.
Execution continues to next instruction

8 WAIT Ignored

Program execution stops and waits for
software or hardware trigger. Execution

continues to next instruction after receipt of
trigger. The latency is equal to the delay
value entered in the WAIT instruction line

plus a fixed delay of 6 clock cycles.
Table 2: Op Code and Data Field Description

http://www.spincore.com 5/19/200611

http://www.spincore.com/

PulseBlaster
Delay Count

The value of the Delay Count field (a 32-bit value) determines how long the current instruction should be
executed. The allowed minimum value of this field is 0x6 for the 32k memory models and 0x2 for the internal-
memory models. The timing controller has a fixed delay of three clock cycles and the value that one enters
into the Delay Count field should account for this inherent delay.

About Spinapi

Spinapi is a control library which allows programs to be written to communicate with the PulseBlaster
board. The most straightforward way to interface with this library is with a C/C++ program, and the API
definitions are described in this context. However, virtually all programming languages and software
environments (including software such as LabView and Matlab) provide mechanisms for accessing the
functionality of standard libraries such as Spinapi.

Please see the example programs for an an explanation of how to use Spinapi. A reference
document for the API is available online at:

http://www.pulseblaster.com/CD/spinapi/spinapi_reference/

Using C Functions to Program the PulseBlaster

A series of functions have been written to control the board and facilitate the construction of pulse
program instructions.

IIn order to use these functions, the DLL (spinapi.dll), the library file (libspinapi.a for mingw, spinapilibgcc

for borland, and spinapi.lib for msvc), the header file (spinapi.h), must be in the working directory of your C
compiler1.

int pb_init();
Initializes PulseBlaster board. Needs to be called before calling any functions using the PulseBlaster.
Returns a negative number on an error or 0 on success.

int pb_close();
Releases PulseBlaster board. Needs to be called as last command in pulse program. Returns a
negative number on an error or 0 on success.

void set_clock(double clock_freq);
Used to set the clock frequency of the board. The variable clock_frequency is specified in MHz
when no units are entered. Valid units are MHz, kHz, and Hz. The default clock value is 50MHz.
You only need to call this function if you are not using a –50 board.

int start_programming(int device);
Used to initialize the system to receive programming information. It accepts a parameter referencing
the target for the instructions. The only alid value for device is PULSE_PROGRAM, It returns a 0 on
success or a negative number on an error.

1 These functions and library files have been generated and tested with MinGW (www.mingw.com), Borland 5.5 (www.borland.com), MS
Visual Studio 2003 (msdn.microsoft.com) compilers.

http://www.spincore.com 5/19/200612

http://www.spincore.com/
http://www.pulseblaster.com/CD/spinapi/spinapi_reference/

PulseBlaster

int pb_inst(int flags, int inst, int inst_data, double length);
Used to send one instruction of the pulse program. Should only be called after
start_programming(PULSE_PROGRAM) has been called. It returns a negative number on an error,
or the instruction number upon success. If the function returns –99, an invalid parameter was passed
to the function. Instructions are numbered starting at 0.

int flags – determines state of each TTL output bit. Valid values are 0x0 to 0x3FF. For example,
0x010 would correspond to bit 7 being on, and all other bits being off.

int inst – determines which type of instruction is to be executed. Please see Table 2 for details.

int inst_data – data to be used with the previous inst field. Please see Table 2 for details.

int length – duration of this pulse program instruction, specified in ns.

int stop_programming();
Used to tell that programming the board is complete. Board execution cannot start until this
command is received. It returns a 0 on success or a negative number on an error.

int pb_start();
Once board has been programmed, this instruction will start execution of pulse program. It returns a
0 on success or a negative number on an error.

int pb_stop();
Stops output of board. Analog output will return to ground, and TTL outputs will remain in the state
they were in when stop command was received. It returns a 0 on success or a negative number on
an error.

http://www.spincore.com 5/19/200613

http://www.spincore.com/

PulseBlaster

Example Use of C Functions
/*
 * PulseBlaster example 1
 * This program will cause the outputs to turn on and off with a period
 * of 400ms
 */

#include <stdio.h>
#define PB24
#include "spinapi.h"

int main(){

int start, status;

printf ("Using spinapi library version %s\n", pb_get_version());

if(pb_init() != 0) {
 printf ("Error initializing board: %s\n", pb_get_error());

 return -1;
 }

 // Tell the driver what clock frequency the board has (in MHz)
 pb_set_clock(100.0);

 pb_start_programming(PULSE_PROGRAM);

// Instruction 0 - Continue to instruction 1 in 100ms
// Flags = 0xFFFFFF, OPCODE = CONTINUE
start = pb_inst(0xFFFFFF, CONTINUE, 0, 200.0*ms);

 // Instruction 1 - Continue to instruction 2 in 100ms
 // Flags = 0x0, OPCODE = CONTINUE
 pb_inst(0x0, CONTINUE, 0, 100.0*ms);

 // Instruction 2 - Branch to "start" (Instruction 0) in 100ms
 // 0x0, OPCODE = BRANCH, Target = start
 pb_inst(0x0, BRANCH, start, 100.0*ms);

pb_stop_programming();

 // Trigger the pulse program
pb_start();

//Read the status register
status = pb_read_status();
printf("status: %d", status);

pb_close();

return 0;
}

A more complex program using C Functions is provided in Appendix II.

http://www.spincore.com 5/19/200614

http://www.spincore.com/

PulseBlaster

Appendix II: Sample C Program
A more complex program using C Functions is provided below.

 //*
 * PulseBlaster example 2
 * This example makes use of all instructions (except WAIT).
 */
#include <stdio.h>
#define PB24
#include <spinapi.h>

int main(int argc, char **argv){
int start, loop, sub;
int status;

 printf ("Using spinapi library version %s\n", pb_get_version());
 if(pb_init() != 0) {
 printf ("Error initializing board: %s\n", pb_get_error());
 return -1;
 }

 // Tell the driver what clock frequency the board has (in MHz)
 pb_set_clock(100.0);

 pb_start_programming(PULSE_PROGRAM);

 // Since we are going to jump forward in our program, we need to
 // define this variable by hand. Instructions start at 0 and count up

sub = 5;

 // Instruction format
 // int pb_inst(int flags, int inst, int inst_data, int length)

 // Instruction 0 - Jump to Subroutine at Instruction 4 in 1s
 start = pb_inst(0xFFFFFF,JSR, sub, 1000.0 * ms);

 // Loop. Instructions 1 and 2 will be repeated 3 times
 // Instruction 1 - Beginning of Loop (Loop 3 times).

// Continue to next instruction in 1s
 loop = pb_inst(0x0,LOOP,3,150.0 * ms);

// Instruction 2 - End of Loop. Return to beginning of loop or
// continue to next instruction in .5 s

 pb_inst(0xFFFFFF,END_LOOP,loop,150.0 * ms);

 // Instruction 3 - Stay here for (5*100ms) then continue to Instruction
// 4

 pb_inst(0x0,LONG_DELAY,5, 100.0 * ms);

 // Instruction 4 - Branch to "start" (Instruction 0) in 1 s
 pb_inst(0x0,BRANCH,start,1000.0*ms);

// Subroutine
 // Instruction 5 - Continue to next instruction in 1 * s

http://www.spincore.com 5/19/200615

http://www.spincore.com/

PulseBlaster
 pb_inst(0x0,CONTINUE,0,500.0*ms);

// Instruction 6 - Return from Subroutine to Instruction 1 in .5*s
 pb_inst(0xF0F0F0,RTS,0,500.0*ms);

 // End of pulse program
 pb_stop_programming();

 // Trigger the pulse program
pb_start();

 //Read the status register
 status = pb_read_status();
 printf("status = %d", status);

 pb_close();

return 0;
}

http://www.spincore.com 5/19/200616

http://www.spincore.com/

PulseBlaster

Contact Information

Email: sales@spincore.com

Web: http://www.spincore.com/

Product URL: http://www.pulseblaster.com/CD/PulseBlaster/PCI/SP2/

http://www.spincore.com 5/19/200617

http://www.spincore.com/
http://www.pulseblaster.com/CD/PulseBlaster/PCI/SP2/
http://www.spincore.com/
mailto:sales@spincore.com

