

PulseBlaster - Programmable Pulse and

Delay Generator
(PCI Board SP17)

(PCIe Boards SP35, SP40, SP41, SP44, SP46)

Models: PB12-100-4k, PB24-100-4k, PB24-100-32k, PB24-100-64k

Owner’s Manual

SpinCore Technologies, Inc.
http://www.spincore.com

http://www.spincore.com/

PulseBlaster

Congratulations and thank you for choosing a design from
SpinCore Technologies, Inc.

We appreciate your business!

At SpinCore, we aim to fully support the needs of our customers. If
you are in need of assistance, please contact us and we will strive to

provide the necessary support.

© 2000-2021 SpinCore Technologies, Inc. All rights reserved.
SpinCore Technologies, Inc. reserves the right to make changes to the product(s) or information herein without notice.
PulseBlaster™, SpinCore, and the SpinCore Technologies, Inc. logos are trademarks of SpinCore Technologies, Inc. All other
trademarks are the property of their respective owners.

SpinCore Technologies, Inc. makes every effort to verify the correct operation of the equipment. This equipment version is not
intended for use in a system in which the failure of a SpinCore device will threaten the safety of equipment or person(s).

http://www.spincore.com 2021/03/222

http://www.spincore.com/

PulseBlaster

Table of Contents
I. Introduction .. 5

Product Overview ... 5

Board Architecture ... 6
Block Diagram ... 6

Key Features .. 6
Output Signals .. 6
Timing Characteristics .. 7
Instruction Set ... 7
External Triggering ... 7
Status Readback .. 7
Summary .. 8

Specifications .. 8
Pulse Parameters ... 8
Pulse Program Control Flow .. 8

Note on Related Boards Compatible with this Manual ... 8

II. Installation ... 9

Installing the PulseBlaster ... 9

Testing the PulseBlaster .. 9

III. Programming the PulseBlaster .. 12

The PulseBlaster Interpreter .. 12

PulseBlaster.NET .. 13

LabVIEW Extensions ... 14

PulseBlaster MATLAB GUI ... 15

C/C++ Programming .. 16

IV. Connecting to the PulseBlaster Board .. 18

Connector Information .. 18

General Pin Assignments ... 18
DB25 Bracket Connector Flag 0..15 - Pin Assignments 18
SMA Connector Clock_Out .. 19

http://www.spincore.com 2021/03/223

http://www.spincore.com/

PulseBlaster
SMA Connector Ext_Clk ... 19

SP17 and PCIe Boards Specific Pin Assignments .. 20
Shrouded IDC Connector Flag0..11 - Pin Assignments 20
Shrouded IDC Connector Flag12..23 - Pin Assignments 20
Shrouded IDC Connector Flag24..26 - Pin Assignments 21
Shrouded IDC Connector HW Trig/Reset .. 22

Clock Oscillator Header .. 24

Appendix I: Controlling the PulseBlaster with SpinAPI 25

Introduction .. 25

Instruction Set Architecture ... 25
Machine-Word Definition .. 25
Breakdown of 80-bit Instruction Word .. 25

About SpinAPI ... 28

Using C Functions to Program the PulseBlaster ... 28
Example Use of C Functions .. 31

Appendix II: Sample C Program .. 32

Appendix III: Available Firmware Designs ... 34

Related Products and Accessories .. 35

Contact Information ... 39

Document Information Page .. 39

http://www.spincore.com 2021/03/224

http://www.spincore.com/

PulseBlaster

I. Introduction

Product Overview

The PulseBlaster device is an intelligent pulse/word/pattern/delay generator producing up to 24

precisely timed, individually controlled digital output signals.

The intelligence of the PulseBlaster timing processor comes from an embedded

microprogrammed control core (uPC). The PulseBlaster processor is able to execute instructions that

allow it to control program flow. This means that the PulseBlaster processor understands Operational

Control Codes, Op Codes, and will execute them much the same way as a general-purpose

microprocessor does. Unlike general-purpose processors, the PulseBlaster processor features a

highly optimized instruction set that has been specifically designed for timing applications. A unique

and distinguishing feature of the PulseBlaster processor is that the execution time of instructions is

user programmable. This feature makes the PulseBlaster capable of executing complex output

timing patterns at greatly varying update rates, ranging from nanoseconds to years, with a constant

setting accuracy of just one clock period (e.g., a 10 ns setting accuracy at a 100 MHz clock

frequency).

http://www.spincore.com 2021/03/225

http://www.spincore.com/
http://spincore.com/products/PulseBlaster/

PulseBlaster
Board Architecture

Block Diagram

Figure 1 presents the general architecture of the PulseBlaster system. The major building blocks

are the SRAM memory (both internal and external1 to the processor), the microcontroller (uPC), the

integrated bus controller (IBC), the counter, and the output buffers. The entire logic design, excluding

output buffers, is contained on a single silicon chip, making it a System-on-a-Chip design. User control

to the system is provided through the IBC over the peripheral component interconnect (PCI) bus.

Figure 1: PulseBlaster board architecture. The clock oscillator signal is derived from an on-chip PLL circuit

typically using a 50 MHz on-board reference clock.

Key Features

Output Signals

The PulseBlaster PB24 models allow for 24 digital output signal lines. Sixteen output lines are

routed to a DB25 bracket-mounted connector. On the SP17 and the PCIe boards, all 24 output lines

are for routed to IDCs. The PB12 models allow for 12 digital output signal lines (bits 0 to 11 as

describe in the Pin Assignments). The individually controlled digital output lines comply with the

transistor-transistor logic (TTL) levels’ standard, and are capable of delivering up to ±25 mA per

bit/channel. The number of output channels and current output are dependent on the board and

firmware, so make sure to see Firmware Designs . If the load being driven is less than 132 Ohms, the

1 SP46 boards do not have external SRAM.

http://www.spincore.com 2021/03/226

PCI Bus
PCI Bus

http://www.spincore.com/

PulseBlaster
voltage will drop below the TTL limit of 3.3 V. If more current is required for lower loads, users can

boost power using the SpinCore TTL Line Driver.

Timing Characteristics

The PulseBlaster’s timing controller accepts an internal (on-board) crystal oscillator up to 100

MHz. The innovative architecture of the timing controller allows the processing of either simple timed

instructions (with delays of up to 232 or 4,294,967,296 clock cycles), or double-length timed

instructions (up to 252 clock cycles long – nearly 2 years with a 100 MHz clock!). Regardless of the

type of instruction, the timing resolution remains constant for any delay – just one clock period (e.g.,

10 ns at 100 MHz).

The core-timing controller has a minimum delay cycle of five clock periods for the PB12-100-4k

and PB24-100-4k and a minimum delay cycle of nine clock periods for PB24-100-32k and PB24-100-

64k. For a 100 MHz clock, this translates to a 50.0 ns pulse/delay/update for the PB12-100-4k and

PB24-100-4k models, and a 90.0 ns pulse/delay/update for the PB24-100-32k and PB24-100-64k

models.

Instruction Set

The PulseBlaster’s design features a set of commands for highly flexible program flow control.

The micro-programmed controller allows for programs to include branches, subroutines, and loops at

up to 8 nested levels – all this to assist the user in creating dense pulse programs that cycle through

repetitious events, especially useful in numerous multidimensional spectroscopy and imaging

applications.

External Triggering

The PulseBlaster can be triggered and/or reset externally via dedicated hardware lines. These

lines combine the convenience of triggering (e.g., in cardiac gating) with the safety of the "stop/reset"

line.

Status Readback

The status of the pulse program can be read in hardware or software. The hardware status

output signals consist of five IDC connector pins labeled “Status”. The same output can be read

through software using C. See Section IV (Connecting to the PulseBlaster Board, page 18) for more

detail about the hardware lines and Appendix I (Controlling the PulseBlaster with SpinAPI, page 25)

for more detail about the C function pb_read_status().

http://www.spincore.com 2021/03/227

http://www.spincore.com/

PulseBlaster

Summary

The PulseBlaster is a versatile, high-performance, programmable pulse/pattern TTL signal

generator operating at speeds of 100 MHz (or more!) and capable of generating

pulses/delays/intervals ranging from 50 ns to two years per instruction. It is connected via PCI or

PCIe port and can accommodate pulse programs with highly flexible control commands of up to 64k

(i.e., 65,536) program words (Model PB24-100-64k). Its high-current output logic bits are individually

controlled with a voltage of 3.3 V.

Specifications

Pulse Parameters

• Up to 24 individually controlled digital output lines (TTL levels, 3.3 V logical “one”)
• Variable pulses/delays for every TTL line
• Up to 25 mA output current per TTL line (depends on board and firmware, see Firmware Designs)
• 50 ns shortest pulse/interval for internal memory models: PB12-100-4k and PB24-100-4k
• 90 ns shortest pulse/interval for external memory models: PB24-100-32k, PB24-100-64k
• 2 years longest pulse/interval (at 100 MHz, with the use of the “Long Delay” instruction)
• 10 ns pulse/interval resolution (at 100 MHz)
• Up to 64k pulse program memory words/instructions (Model PB24-100-64k)
• External triggering and reset – TTL levels

Pulse Program Control Flow

• Loops, nested 8 levels deep
• 20 bit loop counters (max. 1,048,576 repetitions)
• Subroutines, nested 8 levels deep
• Latency after trigger (WAIT state) – 8 clock cycle latency (80 ns at 100 MHz), adjustable to 40

seconds in duration
• 5 MHz max. re-triggering frequency (at 100 MHz clock frequency)

Note on Related Boards Compatible with this Manual

Much of the programming information provided in this manual is nearly universal to SpinCore's

lines of boards. More complex boards such as the PulseBlasterESR, PulseBlaster-DDS, and

RadioProcessor lines of boards still rely on the same PulseBlaster core for TTL pulse generation.

Therefore, the basic example programs for the PulseBlaster will be able to produce the same results

on any of the more complex boards. The exception is the PulseBlaster-DDS-II board which uses a

96-Bit or 124-Bit instruction word, depending on the firmware, instead of an 80-Bit instruction word

and is currently not compatible with PulseBlaster methods of programming the board.

http://www.spincore.com 2021/03/228

http://www.spincore.com/

PulseBlaster

II. Installation

Installing the PulseBlaster

Whenever installing or uninstalling the PulseBlaster, always have it disconnected from the

computer initially. Uninstall any previous version of SpinAPI.

1. Install the latest version of SpinAPI found at: http://www.spincore.com/support/spinapi/ .

• SpinAPI is a custom Application Programming Interface developed by SpinCore

Technologies, Inc. for use with the PulseBlaster and most of SpinCore's other products. It

can be utilized using C/C++ or graphically using the options in the next section below. The

API will also install the necessary drivers.

2. Shut down the computer, unplug the power cord, insert the PulseBlaster card into an appropriate

slot (PCI for PCI boards and PCIe for PCIe boards) and fasten the PC bracket securely with a

screw.

3. Plug the power cord back in, turn on the computer and follow the installation prompts.

Testing the PulseBlaster

The simplest way to test whether the PulseBlaster has been installed properly and can be

controlled as intended is to run a simple test program. These example files can be found in the

PulseBlaster24 folder in the examples folder of the SpinAPI.

The pb24_ex1.exe program will produce a square wave, on all digital outputs, with a logical

high time of 200 ms and logical low time of 200 ms. To test the board, run pb24_ex1.exe and

observe each digital output with an oscilloscope.

If using a high input impedance oscilloscope to monitor the PulseBlaster's output, place a

resistor that matches the characteristic impedance of the transmission line in parallel with the coaxial

transmission line at the oscilloscope input. (e.g., a 50 Ω resistor with a 50 Ω transmission line, see

Figures 2 and 3 below).

http://www.spincore.com 2021/03/229

http://www.spincore.com/
http://www.spincore.com/support/spinapi/
http://www.spincore.com/support/spinapi/
http://www.spincore.com/support/spinapi/instructions/#Windows_Installation_Instructions
http://www.spincore.com/support/spinapi/instructions/#Windows_Uninstallation_Instructions

PulseBlaster

Figure 4 below shows a typical pattern displayed by an oscilloscope when running pb24_ex1.exe with

the above described connections. Verifying this behavior confirms the board is installed properly.

http://www.spincore.com 2021/03/2210

Figure 2: Left: BNC T-Adapter and Right: BNC 50 Ohm resistor.

Figure 4: Expected signal from a PulseBlaster output running pb24_ex1.exe.

Figure 3: BNC T-Adapter on the oscilloscope input channel with coaxial transmission line

connected on the left and BNC 50 Ohm resistor connected to the right to terminate the line.

http://www.spincore.com/

PulseBlaster
You may also run the remaining example programs available for this board to observe different

output patterns and pulse durations. Keep in mind that pb24_programmable_clock.exe is only

compatible with PulseBlasters with the programmable clock feature which is available upon request.

http://www.spincore.com 2021/03/2211

http://www.spincore.com/

PulseBlaster

III. Programming the PulseBlaster

There are several ways of programming the PulseBlaster board. In this section, the PulseBlaster

Interpreter, LabVIEW extensions, .NET GUI, MATLAB GUI, and C/C++ methods of programming will

be introduced. In addition to these, the PulseBlaster is programmable using nearly any higher level

programming software that lets you utilize a C language API package, in this case SpinCore's

SpinAPI.

The PulseBlaster Interpreter

The PulseBlaster board is programmable via the PulseBlaster Interpreter, a programming utility

provided by SpinCore for writing pulse programs. This easy-to-use editor allows you to create, edit,

save and run your pulse sequence. Figure 5, below, shows the PulseBlaster Interpreter being used

with one of the example programs.

The PulseBlaster Interpreter is available for download on the SpinCore website and can be found

in the following location: http://www.spincore.com/support/SPBI/Interpreter_Main.shtml.

Example programs, such as the one above, are installed to

C:\SpinCore\SpinAPI\interpreter\examples by default. For convenience, a shortcut to the

PulseBlaster Interpreter will be added to your desktop. For more information on programming using

the PulseBlaster Interpreter, see the manual located at http://www.spincore.com/support/SPBI/Doc/ .

http://www.spincore.com 2021/03/2212

Figure 5: Graphical Interface of the PulseBlaster Interpreter. The example shown creates

a pulse that toggles all TTL bits on for 100 ms, and all off for 500 ms.

http://www.spincore.com/
http://www.spincore.com/support/SPBI/Doc/
http://www.spincore.com/support/SPBI/Interpreter_Main.shtml

PulseBlaster
PulseBlaster.NET

PulseBlaster.NET is a graphical interface for creating pulse programs and loading them to the

PulseBlaster board. PulseBlaster.NET currently provides the simplest interface possible to pulse

control. Figure 6 shows an example instance of the program.

PulseBlaster.NET is available on the web from http://www.spincore.com/support/net/.

http://www.spincore.com 2021/03/2213

Figure 6: An example pulse program in PulseBlaster.NET. This example creates a pulse that has all TTL bits on for

100 ms, alternating bits on for 400 ms (looping three times), and then all bits off for 100 ms.

http://www.spincore.com/
http://www.spincore.com/support/net/

PulseBlaster
LabVIEW Extensions

The SpinCore PulseBlaster LabVIEW Extensions (PBLV) provide the ability to program and control

the functionality of PulseBlaster boards using the simple National Instruments (NI) LabVIEW

graphical programming interface. The package contains basic subVIs, that can be used to include

PulseBlaster interaction from your own LabVIEW programs, as well as some complete example VIs.

Additionally, all of the examples are available as stand-alone applications, so that no programming is

necessary for use.

There are two versions of the LabVIEW extensions available, free of charge, on SpinCore's

website. The first is for those who do not have LabVIEW or who are not familiar with LabVIEW

programming. This option is a stand-alone GUI (see Figure 7 above) that comes in executable form

and utilizes the LabVIEW runtime environment. The second is for those who have LabVIEW and

http://www.spincore.com 2021/03/2214

Figure 7: Example of PulseBlaster LabVIEW Extensions User

Interface. The example shown has three instructions that toggle

TTL bit 1 on for 200 ms and off for 200 ms.

http://www.spincore.com/

PulseBlaster
would like to make a custom interface for the PulseBlaster board. For more information and

downloads please visit:

http://www.spincore.com/support/PBLV/TTL.shtml

PulseBlaster MATLAB GUI

PulseBlaster MATLAB GUI is a graphical interface for creating pulse programs and loading them

to the PulseBlaster board. PulseBlaster MATLAB GUI currently provides the simplest interface

possible to pulse control. Figure 8 shows an example instance of the program.

PulseBlaster MATLAB GUI is available at:

http://spincore.com/support/PulseBlasterMATLABGUI/pbmgui_main.shtml

http://www.spincore.com 2021/03/2215

Figure 8: An example pulse program in PulseBlaster MATLAB GUI.

http://www.spincore.com/
http://spincore.com/support/PulseBlasterMATLABGUI/pbmgui_main.shtml
http://www.spincore.com/support/PBLV/TTL.shtml

PulseBlaster
C/C++ Programming

The most dynamic and flexible way to program the PulseBlaster board is with C/C++ using the

SpinAPI package. While GUI's are easier to use, coding in C/C++ allows you to better utilize all

features of the board, and in some cases it may be easier to copy and paste lines of code than to

make 100 instructions on a GUI. The instructions to compile on Windows can be found at

http://www.spincore.com/support/spinapi/Windows_Help.shtml. After configuring the compiler,

changing one of our example programs and recompiling the executable file for use with your

PulseBlaster board is as easy as clicking “Rebuild All” (see Figure 9 below).

Making changes to an example program requires understanding of only a few lines of code. The

most important is the following line from pb24_ex1.c (found in

C:\SpinCore\SpinAPI\examples\PulseBlaster24 if the examples were installed in the default

directory):

pb_inst(0xFFFFFF, CONTINUE, 0, 200.0*ms);

This line of code produces a high output on all the TTL bits lasting for 200 ms and then continues

on to the next instruction. This is accomplished using the four parameters in the function call

(parameters are located between parentheses and are separated by commas).

http://www.spincore.com 2021/03/2216

Figure 9: Compiling a C program to run the PulseBlaster board is easy!

http://www.spincore.com/
http://www.spincore.com/support/spinapi/Windows_Help.shtml

PulseBlaster
• The first is the hexadecimal 0xFFFFFF which corresponds to setting the 24 output bits to a

logical high since it translates to a binary string of 24 1's.

• The second parameter is CONTINUE which means to proceed on to the next instruction after

this one completes. Other examples for what this parameter could be are BRANCH or

LOOP.

• The third parameter is the instruction data field which, for a CONTINUE instruction, is ignored

because it is unnecessary for that particular instruction. In the event of another instruction,

such as BRANCH, this parameter would correspond to the target of the BRANCH instruction.

• The fourth parameter is 200.0*ms which means that this instruction will last for 200 ms.

A simple program to generate a square wave signal on all 24 output bits will have two intervals (as

in the GUI Interpreter described earlier), as shown below:

start= pb_inst(0xFFFFFF, CONTINUE, 0, 200.0*ms);

pb_inst(0x000000, BRANCH, start, 200.0*ms);

The first line of the code above corresponds to the logical "one” on all output bits. The second line

corresponds to the logical "zero," after which the program branches (jumps) back to the beginning,

thus resulting in a continuous generation of a square wave on all outputs.

A complete C program will have, in addition to the two lines above, the initialization section, the

closing section and, optionally, the (software) trigger to start the execution immediately upon launch

of the program. For more detailed information on programming the board using C/C++, see the

appendices.

http://www.spincore.com 2021/03/2217

http://www.spincore.com/
http://www.spincore.com/support/spinapi/using_spin_api_pb.shtml
http://www.spincore.com/support/spinapi/using_spin_api_pb.shtml

PulseBlaster

IV. Connecting to the PulseBlaster Board

Connector Information

On the SP17 board, the Clock_Out and Ext_Clk are SMA connectors, Flag0..15 is a DB-25 connector,

Flag0..11, Flag12..23, Flag24..26 and HW Trig/Reset are shrouded IDC header connectors. Other versions of

the board may exist, but main connector features are typically preserved.

General Pin Assignments

DB25 Bracket Connector Flag 0..15 - Pin Assignments

Outputs 16 TTL signals generated by the user’s program. Please consult the table below for bit

assignments.

http://www.spincore.com 2021/03/2218

Figure 10: Sketch of PulseBlaster, Board Version SP17

http://www.spincore.com/

PulseBlaster
Pin Assignments

Pin# Bit# Pin# Bit#
1 GND 14 GND
2 Bit 15 15 Bit 14
3 GND 16 Bit 13
4 Bit 12 17 GND
5 Bit 11 18 Bit 10
6 GND 19 Bit 9
7 Bit 8 20 GND
8 Bit 7 21 Bit 6
9 GND 22 Bit 5

10 Bit 4 23 GND
11 Bit 3 24 Bit 2
12 GND 25 Bit 1
13 Bit 0

Table 1: Lower 16 output bits and 9 ground lines on the bracket-mounted DB25 connector.

SMA Connector Clock_Out

This SMA connector outputs the reference clock as a 3.3 V TTL signal, i.e., it generates positive-

only voltage. Note that the PulseBlaster PCI and PCIe boards use 50 MHz as the reference clock

frequency and that clock is internally multiplied to provide that actual PulseBlaster Core frequency2.

The output resembles a square wave if properly terminated. This signal can be measured with an

oscilloscope using either a high impedance probe at the SMA connector or a 50 ohm coaxial line that

is terminated.

SMA Connector Ext_Clk

This SMA connector can be used to input an external clock signal. Extreme care should be

exercised, and certain conditions have to be met prior to using this connector. First, before attaching

any external clock source, the internal clock oscillator must be removed from its socket. The internal

clock oscillator’s orientation should be noted - if the internal clock is reconnected, it must be inserted in

the same orientation or board damage may occur. Second, the external clock signal must be 3.3 V

TTL, i.e., a positive-only voltage - any negative voltage at the Ext_Clk connector will damage the

programmable-logic processor chip. Third, the Ext_Clk connector for certain boards is not terminated

on the printed circuit board, and a 50 ohm terminating resistor should be used externally via a T

connector placed directly at the SMA Ext_Clk connector. If the Ext_Clk is terminated, there will be a

50 ohm resistor on one the Ext_Clk pads: R401 pads for SP2 board, R200 pads for SP17 board, or

R001 for PCIe boards. Soldering a 50 ohm resistor to these pads, if not already populated, is an

alternative to using a T connector with a 50 ohm resistor.

2 Custom firmware may use a different speed reference clock and may not be internally multiplied.

http://www.spincore.com 2021/03/2219

http://www.spincore.com/

PulseBlaster
SP17 and PCIe Boards Specific Pin Assignments

Shrouded IDC Connector Flag0..11 - Pin Assignments

The shrouded IDC connector labeled Flag 0..11 outputs TTL signals generated by the user’s

program. Please consult the table below for pin assignments.

Pin Assignments
Pin# Pin#

1 Bit 0 13 Bit 6
2 GND 14 GND
3 Bit 1 15 Bit 7
4 GND 16 GND
5 Bit 2 17 Bit 8
6 GND 18 GND
7 Bit 3 19 Bit 9
8 GND 20 GND
9 Bit 4 21 Bit 10

10 GND 22 GND
11 Bit 5 23 Bit 11
12 GND 24 GND

Table 2: Lower 12 output bits and 12 ground lines on the 24 pin IDC connector.

The shrouded IDC connector labeled Flag 0..11 can be connected to IDC-MMCX adapter boards

(Figure 17, page 36) which allow the use of MMCX cables. This enables the individual bits of the

PulseBlaster to be more easily accessed. Pin 1 on the MMCX adapter board can identified with a

square pin.

Shrouded IDC Connector Flag12..23 - Pin Assignments

The shrouded IDC connector labeled Flag 12..23 outputs TTL signals generated by the user’s

program. Please consult the table below for pin assignments.

The shrouded IDC connector labeled Flag 12..23 can be connected to IDC-MMCX adapter

boards (Figure 17, page 36) which allows the use of MMCX cables. This enables the individual bits of

the PulseBlaster to be more easily accessed. Pin 1 on the MMCX adapter board can identified with a

square pin.

http://www.spincore.com 2021/03/2220

http://www.spincore.com/

PulseBlaster
Pin Assignments

Pin# Pin#
1 Bit 12 13 Bit 18
2 GND 14 GND
3 Bit 13 15 Bit 19
4 GND 16 GND
5 Bit 14 17 Bit 20
6 GND 18 GND
7 Bit 15 19 Bit 21
8 GND 20 GND
9 Bit 16 21 Bit 22

10 GND 22 GND
11 Bit 17 23 Bit 23
12 GND 24 GND

Table 3: Higher 12 output bits and 12 ground lines on the 24 pin IDC connector.

Shrouded IDC Connector Flag24..26 - Pin Assignments

The shrouded IDC connector labeled Flag 24..26 outputs three status signals: Reset, Running,

and Waiting. Please consult the table below for pin assignments.

Pin Assignments
Pin# Pin#

1 Reset 13 GND
2 GND 14 GND
3 Running 15 GND
4 GND 16 GND
5 Waiting 17 GND
6 GND 18 GND
7 GND 19 GND
8 GND 20 GND
9 GND 21 GND

10 GND 22 GND
11 GND 23 GND
12 GND 24 GND

Table 4: 3 status signals and 21 ground lines on the 24 pin IDC connector.

The status pins correspond to the current state of the pulse program and are defined as follows:

Reset – Driven high when the PulseBlaster device is in a RESET state and must be

reprogrammed before code execution can begin again.

Running – Driven high when the PulseBlaster device is executing a program. It is low when the

PulseBlaster enters either a reset or idle state.

http://www.spincore.com 2021/03/2221

http://www.spincore.com/

PulseBlaster
Waiting – The PulseBlaster device has encountered a WAIT Op Code and is waiting for the next

trigger (either hardware or software) to resume operation. Note that the Running bit will also be

high during a WAIT state.

Shrouded IDC Connector HW Trig/Reset

This is an input connector, for hardware triggering (HW_Trigger) and resetting (HW_Reset).

CAUTION: Applying voltages to the input pins that are greater than 3.3V or less than 0V

will damage the PulseBlaster.

Pin Assignments
Pin# Pin#

1 GND 2 HW_Trigger_H
3 GND 4 HW_Trigger_H
5 GND 6 HW_Reset_H
7 GND 8 HW_Reset
9 GND 10 HW_Trigger

Table 5: Pinout for HW_TRIG/RESET IDC Connector on SP17 and PulseBlaster PCIe boards.

Note that for all board models the IDC pins are enumerated in the manner shown by Figure 11,

below. Pin 1 is marked on the board and the rest of the pins follow in this fashion (for the 26 pin IDC

connectors, the pin numbers simply continue in this pattern until pin 26).

SP17 and PulseBlaster PCIe boards come with three hardware trigger pins. HW_Trigger is

pulled to high voltage (3.3V) on the board and can be triggered by a low pulse (or shorting to GND,

e.g., pin 9). The two HW_Trigger_H pins are pulled to low voltage (ground) on the board and can be

triggered with a high voltage pulse (to 3.3V). When the falling edge is detected (or rising edge on

HW_Trigger_H), and the program is idle, code execution is triggered. If the program is idle due to a

WAIT instruction, the HW_Trigger will cause the program to continue to the next instruction. If the

program is idle due to a STOP instruction or a HW_Reset signal, the HW_Trigger will start execution

from the beginning of the program. If the STOP instruction was used, a HW_Reset or software reset

(pb_reset()) needs to be applied prior to the HW_Trigger.

http://www.spincore.com 2021/03/2222

Figure 11: IDC connector pin enumeration.

http://www.spincore.com/

PulseBlaster
NOTE: The PulseBlaster requires a 3.3V input signal for HW_Trigger. Applying voltages to the

input pins that are greater than 3.3V or less than 0V will damage the PulseBlaster.

Figure 12, below, shows an example of the HW_Trigger signal with a latency of 80 ns. Please

refer to the Instruction Set Architecture section in Appendix I for more details on programming the

duration of the WAIT latency. To trigger once, the trigger signal must begin at high voltage (between

2V and 3.3V), then must be pulled low (to ground) and stay low for at least 10 ns before returning to

high voltage. The PulseBlaster will continue to trigger or reset for as long as the HW_Trigger or

HW_Reset signals stay at ground. If using a long TTL cable, make sure it is terminated and a buffer is

used. If necessary, use an inverter or program the triggering device to match the high-low-high

HW_Trigger signal. The input impedance of the HW_Trigger pin is 10 kOhms.

SP17 and PulseBlaster PCIe models have two hardware reset pins. HW_Reset is pulled to high

voltage (3.3V) on the board and can be activated by a low voltage pulse (or shorting to GND, e.g., pin

7). HW_Reset_H is pulled to low voltage on the board (ground) and can be activated by a high

voltage pulse (to 3.3V). When the signal is activated during the execution of a program, the controller

resets itself back to the beginning of the program. Program execution can be started from the

beginning by either a software start command (pb_start()) or by a hardware trigger.

NOTE: The PulseBlaster requires a 3.3V input signal for HW_Reset. Applying voltages to the

input pins that are greater than 3.3V or less than 0V will damage the PulseBlaster.

http://www.spincore.com 2021/03/2223

Figure 12: Demonstration of HW_Trigger high-low-high signal. The blue
shows the HW_Trigger signal, the pink shows one of the output flags
Caution: applying voltages to the input pins that are greater than 3.3V
or less than 0V will damage the PulseBlaster.

http://www.spincore.com/

PulseBlaster
Clock Oscillator Header

The PulseBlaster comes with a crystal oscillator mounted on the oscillator socket to provide a

timing signal for the board. If required, it is possible to remove the oscillator that comes standard, and

instead drive the PulseBlaster with an external clock signal. The oscillator module can be removed

from the board, and an external signal can be input through the header pins. Do not attempt to drive a

PulseBlaster board with an external clock while an oscillator module is also connected. The standard

clock oscillator’s orientation should be noted - if the clock oscillator is reconnected, it must be inserted

in the same orientation or board damage may occur. The external clock signal must be a TTL square

wave, i.e. a digital signal of no more than 3.3 V. This is the absolute maximum allowable voltage,

typically a voltage of 1.5-2 V is sufficient. Be aware that the TTL signal must be a positive-only signal,

any negative voltage will damage the programmable-logic chip.

http://www.spincore.com 2021/03/2224

Figure 13: Both the bare header socket and the installed clock module are shown above. Please note

the proper orientation of the 50 MHz clock.

http://www.spincore.com/

PulseBlaster
Appendix I: Controlling the PulseBlaster with SpinAPI

Introduction

This section provides detailed descriptions of the instruction set for the processor on the

PulseBlaster board and the C functions in SpinAPI that utilize them. The information on the

instruction set is very in depth and knowledge of this is essential to be able to properly operate the

board. Details of the instruction set architecture are provided first so that the user can understand the

functionality of the PulseBlaster. The second part provides information about SpinCore's Application

Programming Interface (API) package, called SpinAPI.

Instruction Set Architecture

Machine-Word Definition

The PulseBlaster pulse timing and control processor implements an 80-bit wide Very Long

Instruction Word (VLIW) architecture. The VLIW memory words have specific bits/fields dedicated to

specific purposes, and every word should be viewed as a single instruction of the micro-controller.

The maximum number of instructions that can be loaded to on-chip memory is equal to the memory

size described in the model number (i.e., 4k memory words for Model PB24-100-4k, 32k memory

words for Model PB24-100-32k, etc.). The execution time of instructions can be varied and is under

(self) control by one of the fields of the instruction word – the shortest being five clock cycles for the

“Internal Memory Model” and nine clock cycles for the “External Memory Model.” All instructions have

the same format and bit length, and all bit fields have to be filled. Figure 14 shows the fields and bit

definitions of the 80-bit instruction word.

Breakdown of 80-bit Instruction Word

http://www.spincore.com 2021/03/2225

Figure 14: Bit definitions of the 80-bit instruction/memory word.

Bit Definitions for the 80-bit Instruction Word (VLIW)

 Output/Control Word | Data Field | OP Code | Delay Count
(24 bits) (20 bits) (4 bits) (32 bits)

http://www.spincore.com/

PulseBlaster
The 80-bit VLIW is broken up into 4 sections:

1. Output Pattern and Control Word - 24 bits.

2. Data Field - 20 bits.

3. Op Code - 4 bits.

4. Delay Count - 32 bits.

Output Pattern and Control Word

Please refer to Table 6 for output pattern and control bit assignments of the 24-bit output/control word.

Bit # Output Connector Label Bit # Output Connector Label
23 Flag12..23 Out pin 23 11 Flag0..11 Out pin 23
22 Flag12..23 Out pin 21 10 Flag0..11 Out pin 21
21 Flag12..23 Out pin 19 9 Flag0..11 Out pin 19
20 Flag12..23 Out pin 17 8 Flag0..11 Out pin 17
19 Flag12..23 Out pin 15 7 Flag0..11 Out pin 15
18 Flag12..23 Out pin 13 6 Flag0..11 Out pin 13
17 Flag12..23 Out pin 11 5 Flag0..11 Out pin 11
16 Flag12..23 Out pin 9 4 Flag0..11 Out pin 9
15 Flag12..23 Out pin 7 3 Flag0..11 Out pin 7
14 Flag12..23 Out pin 5 2 Flag0..11 Out pin 5
13 Flag12..23 Out pin 3 1 Flag0..11 Out pin 3
12 Flag12..23 Out pin 1 0 Flag0..11 Out pin 1

Table 6: Output Pattern and Control Word Bits.

http://www.spincore.com 2021/03/2226

http://www.spincore.com/

PulseBlaster

Data Field and Op Code

Please refer to Table 7 for information on the available operational codes (OpCode) and the

associated data field functions (the data field's function is dependent on the OpCode).

Op Code # Inst Inst_data Function

0 CONTINUE Ignored
Program execution continues to next

instruction.

1 STOP Ignored
Stop execution of program. Aborts the

operation of the micro-controller. (Please
see note below)

2 LOOP
Number of desired loops. This
value must be greater than or

equal to 1.

Specify beginning of a loop. Execution
continues to next instruction. Data used to

specify number of loops

3 END_LOOP Address of beginning of loop
Specify end of a loop. Execution returns to

beginning of loop and decrements loop
counter.

4 JSR
Address of first subroutine

instruction
Program execution jumps to beginning of a

subroutine

5 RTS Ignored
Program execution returns to instruction

after JSR was called

6 BRANCH Address of next instruction
Program execution continues at specified

instruction

7 LONG_DELAY
Delay multiplier. This value

must be greater than or equal to
2.

For long interval instructions. Executes
length of pulse given in the time field

multiplied by the value in the data field.

8 WAIT Ignored

Program execution stops and waits for
software or hardware trigger. Execution

continues to next instruction after receipt of
trigger. A WAIT instruction must be

preceded by an instruction lasting longer
than the minimum instruction time.

Table 7: Op Code and Data Field Description.

NOTE: For SP17 boards model PB12-100-4k, the output can be set and held by the control word. The behavior of
the STOP OpCode maybe different based on the firmware version. If you have any questions, please contact
SpinCore.

Delay Count

The value of the Delay Count field (a 32-bit value) determines how long the current instruction

should be executed. The allowed minimum value of this field is 0x00000002 for the 4k and

0x00000006 for the 32k models, and the allowed maximum is 0xFFFFFFFF. The timing controller

has a fixed delay of three clock cycles and the value that one enters into the Delay Count field should

account for this inherent delay. (NOTE: the pb_inst() family of functions in SpinAPI and the

PulseBlaster Interpreter automatically account for this delay.)

http://www.spincore.com 2021/03/2227

http://www.spincore.com/

PulseBlaster
About SpinAPI

SpinAPI is a control library which allows programs to be written to communicate with the

PulseBlaster board. The most straightforward way to interface with this library is with a C/C++

program, and the API definitions are described in this context. However, virtually all programming

languages and software environments (including software such as LabVIEW and MATLAB) provide

mechanisms for accessing the functionality of standard libraries such as SpinAPI.

Please see the example programs for an an explanation of how to use SpinAPI. A reference

document for all SpinAPI functions is available online at the following URL:

http://www.spincore.com/support/spinapi/reference/production/2013-09-25/spinapi_8h.html

Using C Functions to Program the PulseBlaster

A series of functions have been written to control the board and facilitate the construction of pulse

program instructions.

In order to use these functions, the DLL (spinapi.dll), the library file (libspinapi.a for MinGW,

spinapilibgcc for Borland, and spinapi.lib for MSVC), the header file (spinapi.h), must be in the

working directory of your C compiler3.

int pb_init();

Initializes PulseBlaster board. Needs to be called before calling any functions using the

PulseBlaster. It returns a 0 on success or a negative number on an error.

int pb_close();

Releases PulseBlaster board. Needs to be called as last command in pulse program. It returns a

0 on success or a negative number on an error.

3 These functions and library files have been generated and tested with MinGW (www.mingw.com), Borland 5.5 (www.borland.com),
MS Visual Studio 2003 (msdn.microsoft.com) compilers.

http://www.spincore.com 2021/03/2228

http://www.spincore.com/
http://www.spincore.com/support/spinapi/reference/production/2013-09-25/spinapi_8h.html

PulseBlaster
int pb_core_clock(double clock_freq);

Used to set the clock frequency of the board. The variable clock_frequency is specified in MHz

when no units are entered. Valid units are MHz, kHz, and Hz. The default clock value is 50MHz.

You only need to call this function if you are not using a 50 MHz board which is reflected in the

model (e.g. PB24-100-4k). Please contact SpinCore for more information if needed.

int start_programming(int device);

Used to initialize the system to receive programming information. It accepts a parameter

referencing the target for the instructions. The only valid value for device is PULSE_PROGRAM, it

returns a 0 on success or a negative number on an error.

int pb_inst(int flags, int inst, int inst_data, double length);

Used to send one instruction of the pulse program. Should only be called after

start_programming(PULSE_PROGRAM) has been called. It returns a negative number on an

error, or the instruction number upon success. If the function returns –99, an invalid parameter

was passed to the function. Instructions are numbered starting at 0.

int flags – determines state of each TTL output bit. Valid values are 0x0 to 0xFFFFFF. For

example, 0x010 would correspond to bit 4 being on, and all other bits being off.

int inst – determines which type of instruction is to be executed. Please see Table 7 for details.

int inst_data – data to be used with the previous inst field. Please see Table 7 for details.

double length – duration of this pulse program instruction, specified in nanoseconds (ns).

int stop_programming();

Used to tell that programming the board is complete. Board execution cannot start until this

command is received. It returns a 0 on success or a negative number on an error.

int pb_start();

Once board has been programmed, this instruction will start execution of pulse program. It

returns a 0 on success or a negative number on an error.

http://www.spincore.com 2021/03/2229

http://www.spincore.com/

PulseBlaster
int pb_stop();

Stops output of board. Analog output will return to ground, and TTL outputs will remain in the

state they were in when stop command was received. It returns a 0 on success or a negative

number on an error.

int pb_read_status();

Read status from the board. Each bit of the returned integer indicates whether the board is in that

state. Bit 0 is the least significant bit.

● Bit 0 – Stopped

● Bit 1 – Reset

● Bit 2 – Running

● Bit 3 – Waiting

● Bit 4 – Scanning (RadioProcessor boards only)

Note on Bit 1: Bit 1 will be high, '1', as soon as the board is initialized. It will remain high until a

hardware or software reset occurs. At that point, it will stay low, '0', until the board is triggered

again.

Bits 5-31 are reserved for future use. It should not be assumed that these will be set to 0.

char* pb_get_version();

Returns the version of SpinAPI in the form YYYYMMDD, e.g. 20090209. This function should be

used to make sure you are using an up to date version of SpinAPI.

int pb_select_board(int board_num);

If multiple boards from SpinCore Technologies are present in your system, this function allows

you to select which board to communicate with. Once this function is called, all subsequent

commands (such as pb_init(), pb_core_clock(), etc.) will be sent to the selected board. You may

change which board is selected at any time. If you have only one board, it is not necessary to call

this function. All PCI slot boards are numbered before any USB boards, starting with the number

0. This function returns a 0 upon success, and a negative number upon failure.

http://www.spincore.com 2021/03/2230

http://www.spincore.com/

PulseBlaster
Example Use of C Functions
/*
 * PulseBlaster example 1
 * This program will cause the outputs to turn on and off with a period
 * of 400ms
 */
#include <stdio.h>
#define PB24
#include "spinapi.h"

int main(){

int start, status;

printf ("Using spinapi library version %s\n", pb_get_version());

if(pb_init() != 0) {
 printf ("Error initializing board: %s\n", pb_get_error());

 return -1;
 }

 // Tell the driver what clock frequency the board has (in MHz)
 pb_core_clock(100.0);

 pb_start_programming(PULSE_PROGRAM);

// Instruction 0 - Continue to instruction 1 in 200ms
// Flags = 0xFFFFFF, OPCODE = CONTINUE
start = pb_inst(0xFFFFFF, CONTINUE, 0, 200.0*ms);

 // Instruction 1 - Continue to instruction 2 in 100ms
 // Flags = 0x0, OPCODE = CONTINUE
 pb_inst(0x0, CONTINUE, 0, 100.0*ms);

 // Instruction 2 - Branch to "start" (Instruction 0) in 100ms
 // 0x0, OPCODE = BRANCH, Target = start
 pb_inst(0x0, BRANCH, start, 100.0*ms);

pb_stop_programming();

 // Trigger the pulse program
pb_start();

//Read the status register
status = pb_read_status();
printf("status: %d", status);

pb_close();

return 0;
}

A more complex program using C Functions is provided in Appendix II.

http://www.spincore.com 2021/03/2231

http://www.spincore.com/

PulseBlaster

Appendix II: Sample C Program
 //*
 * PulseBlaster example 2
 * This example makes use of all instructions (except WAIT).
 */
#include <stdio.h>
#define PB24
#include <spinapi.h>

int main(int argc, char **argv){
int start, loop, sub;
int status;

 printf ("Using spinapi library version %s\n", pb_get_version());
 if(pb_init() != 0) {
 printf ("Error initializing board: %s\n", pb_get_error());
 return -1;
 }

 // Tell the driver what clock frequency the board has (in MHz)
 pb_core_clock(100.0);

 pb_start_programming(PULSE_PROGRAM);

 // Since we are going to jump forward in our program, we need to
 // define this variable by hand. Instructions start at 0 and count up

sub = 5;

 // Instruction format
 // int pb_inst(int flags, int inst, int inst_data, int length)

 // Instruction 0 - Jump to Subroutine at Instruction 5 in 1s
 start = pb_inst(0xFFFFFF,JSR, sub, 1000.0 * ms);

 // Loop. Instructions 1 and 2 will be repeated 3 times
 // Instruction 1 - Beginning of Loop (Loop 3 times). Continue to next

// instruction in 1s
 loop = pb_inst(0x0,LOOP,3,150.0 * ms);

// Instruction 2 - End of Loop. Return to beginning of loop or
// continue to next instruction in .5 s

 pb_inst(0xFFFFFF,END_LOOP,loop,150.0 * ms);

 // Instruction 3 - Stay here for (5*100ms) then continue to Instruction
// 4

 pb_inst(0x0,LONG_DELAY,5, 100.0 * ms);

 // Instruction 4 - Branch to "start" (Instruction 0) in 1 s
 pb_inst(0x0,BRANCH,start,1000.0*ms);

// Subroutine
 // Instruction 5 - Continue to next instruction in 1 * s
 pb_inst(0x0,CONTINUE,0,500.0*ms);

// Instruction 6 - Return from Subroutine to Instruction 1 in .5*s
 pb_inst(0xF0F0F0,RTS,0,500.0*ms);

http://www.spincore.com 2021/03/2232

http://www.spincore.com/

PulseBlaster

 // End of pulse program
 pb_stop_programming();

 // Trigger the pulse program
pb_start();

 //Read the status register
 status = pb_read_status();
 printf("status = %d", status);

 pb_close();

return 0;
}

http://www.spincore.com 2021/03/2233

http://www.spincore.com/

PulseBlaster

Appendix III: Available Firmware Designs
The following table contains information about the various firmware designs available on the

PulseBlaster series of boards.

Firmware
Revision

Board Clock Speed
(MHz)

Number of
Output Bits

Memory Depth
(words)

Output Current
Strength (mA)

19-9 SP17 100 12 4k 21

19-15 SP17 100 12 4k 21

19-16 SP17 100 24 64k 84

19-17 SP17 100 24 4k 21

21-2 SP35 100 12 4k 21

22-1 SP40 100 24 4k 21

23-1 SP41 100 4 4k 21

25-1 SP44 100 24 4k 21

26-1 SP46 100 24 4k 21

26-4 SP46 100 12 4k 21
Table 8: Firmware Designs.

4 SpinCore's TTL Line Driver can be used if higher current is required

http://www.spincore.com 2021/03/2234

http://www.spincore.com/
http://spincore.com/products/SpinCoreTTLLineDriver/SpinCoreTTLLineDriver.shtml

PulseBlaster

Related Products and Accessories

1. Ribbon Cable with 2x13 IDC plug and DB-25 (Parallel port style*) connector on PC bracket. For

more information, please visit http://www.spincore.com/products/InterfaceCable/

*Note: This is NOT a parallel port and will not work with a PC printer or other such

peripheral devices! This cable uses the parallel type DB-25 connector to easily access the

TTL bits of the PulseBlaster Board.

2. PulseBlasterESR-PRO – Alternate version of the PulseBlaster that are capable of Higher Clock

Frequencies (currently up to 500 MHz). For more information, please visit

http://www.spincore.com/products/PulseBlasterESR-PRO/

3. PulseBlasterUSB – The portable, stand-alone version of the PulseBlaster. For more information,

please visit http://www.spincore.com/products/PulseBlasterUSB

4. PulseBlasterDDS – Built upon the PulseBlaster, the PulseBlasterDDS features programmable

TTL outputs and RF Pulse Generation. For more information, please visit

http://www.spincore.com/products/PulseBlasterDDS-300/

http://www.spincore.com 2021/03/2235

Figure 15: PulseBlaster Parallel Port Interface Cable.

http://www.spincore.com/
http://www.spincore.com/products/PulseBlasterDDS-300/
http://www.spincore.com/products/PulseBlasterUSB
http://www.spincore.com/products/PulseBlasterESR-PRO/
http://www.spincore.com/products/InterfaceCable/

PulseBlaster
5. If you require an Oven Controlled Clock Oscillator (with sub-ppm stability) or other custom

features, please visit http://spincore.com/products/OCXO/ or inquire with SpinCore Technologies

through our contact form, which is available at http://www.spincore.com/contact.shtml

6. SpinCore MMCX Adapter Board Figure 17 – This adapter board allows easy access to the

individual bits of the PulseBlaster. This adapter board can be part of a package that includes 12

MMCX to BNC cables and three SMA to BNC adapters. This package can be changed to include

any number of cables and any number of adapter boards. For ordering information, please visit

http://spincore.com/products/Adapters/ or contact SpinCore at

http://www.spincore.com/contact.shtml.

http://www.spincore.com 2021/03/2236

Figure 16: An Oven Controlled Clock Oscillator (or OCXO) with sub-ppm frequency stability is
available for the PulseBlaster upon request.

Figure 17: MMCX Adapter Board allows easy access to individual bits.

http://www.spincore.com/
http://www.spincore.com/contact.shtml
http://spincore.com/products/Adapters/
http://www.spincore.com/contact.shtml
http://spincore.com/products/OCXO/

PulseBlaster

The SMA-BNC Adapter Board, shown in Figure 18, provides easy access to four additional output

signals from the back panel of your computer. SMA-SMA cables are available from SpinCore

upon request. For ordering information, please visit http://spincore.com/products/Adapters/ or

contact SpinCore at http://www.spincore.com/contact.shtml.

IDC to BNC Adapter Set-Up on an SP4B Board Figure 19 – Additional BNC output signals can be

accessed using a set-up consisting of an IDC-MMCX adapter board (SP32), MMCX-SMA cables,

and an SMA-BNC adapter board (SP29P).

These three components correspond to Number 1 (SP32, MMCX-SMA Adapter Board), Number

2 (MMCX-SMA cables), and Number 3 (SP29P, SMA-BNC Adapter Board) below.

http://www.spincore.com 2021/03/2237

Figure 18: SMA-BNC Adapter Board is available to access additional flag bits.

Figure 19: IDC to BNC Adapter Set-Up on an SP4B Board.

http://www.spincore.com/
http://www.spincore.com/contact.shtml
http://spincore.com/products/Adapters/

PulseBlaster
7. SpinCore TTL Line Driver Figure 20 - A USB-powered device with four input channels and 8

output lines. Each output line is equipped with current driving capabilities to insure TTL voltage

level over 50 Ohm loads. The SpinCore TTL Line Driver is the perfect tool to accompany any TTL

device. Additional specifications, ordering information, and the manual for the TTL Line Driver are

available at

http://www.spincore.com/products/SpinCoreTTLLineDriver/SpinCoreTTLLineDriver.shtml.

8. If you require a custom design, custom interface cables, or other custom features, please inquire

with SpinCore Technologies through our contact form, which is available at

http://www.spincore.com/contact.shtml.

http://www.spincore.com 2021/03/2238

Figure 20: TTL Line Driver assures TTL levels over 50 Ohm loads.

http://www.spincore.com/
http://www.spincore.com/contact.shtml
http://www.spincore.com/products/SpinCoreTTLLineDriver/SpinCoreTTLLineDriver.shtml

PulseBlaster

Contact Information
SpinCore Technologies, Inc.
4631 NW 53rd Avenue, SUITE 103
Gainesville, FL 32653
USA

Telephone (USA): 352-271-7383
Website: http://www.spincore.com
Web Form: http://spincore.com/contact.shtml

Document Information Page

Revision history available at SpinCore.

http://www.spincore.com 2021/03/2239

http://www.spincore.com/
http://spincore.com/contact.shtml
http://www.spincore.com/

