
SpinCore Technologies, Inc.

http://www.spincore.com

PulseBlasterDDS-IV-1000
Owner's Manual

PulseBlasterDDS-IV-1000

http://www.spincore.com ii 2015/07/02

Congratulations and thank you for choosing a design from
SpinCore Technologies, Inc.

We appreciate your business!

At SpinCore we aim to fully support the needs of our customers. If you
are in need of assistance, please contact us and we will strive to provide

the necessary support.

© 2015 SpinCore Technologies, Inc. All rights reserved.

SpinCore Technologies, Inc. reserves the right to make changes to the product(s) or information herein without notice. PulseBlasterTM,
PulseBlasterDDS-IV-1000TM, SpinCore, and the SpinCore Technologies, Inc. logos are trademarks of SpinCore Technologies, Inc. All other
trademarks are the property of their respective owners.

SpinCore Technologies, Inc. makes every effort to verify the correct operation of the equipment. This equipment version is not intended for
use in a system in which the failure of a SpinCore device will threaten the safety of equipment or person(s).

PulseBlasterDDS-IV-1000

Table of Contents

I. Introduction .. 1
Product Overview .. 1

Product Architecture ... 2

Product Specifications ... 5

II. System Installation ... 6
Testing the PulseBlasterDDS-IV-1000 ... 6

III. Using the PulseBlasterDDS-IV-1000 ... 7
Controlling the PulseBlasterDDS-IV-1000 .. 7

Selecting and Initializing the System .. 8

Configuring the DDS Units ... 9

Configuring the AD9148 Interpolation Settings ... 10

Real Time vs. Slow Software Control .. 11

Writing Pulse Programs .. 12

Sample Output ... 14

API Reference .. 26

IV. Connecting to the PulseBlasterDDS-IV-1000 29
Front Panel Connector Locations ... 29

RF Outputs ... 29

Digital Outputs ... 30

10 MHz Reference Clock Input ... 30

Trigger and Reset Input .. 31

Interrupt Input .. 32

http://www.spincore.com iii 2015/07/02

PulseBlasterDDS-IV-1000
V. Contact Information ... 34

VI. Document Information .. 34

http://www.spincore.com iv 2015/07/02

PulseBlasterDDS-IV-1000

I. Introduction

Product Overview

The PulseBlasterDDS-IV-1000 is a programmable pattern- and waveform- generation system from SpinCore

Technologies, Inc. that couples SpinCore’s unique intelligent-pattern-generation processor core, the PulseBlaster,

with two direct digital synthesis (DDS) units for use in system control and pulse generation. By interfacing the

system with a high-performance Analog Devices' AD9148 Quad DAC (Digital to Analog Converter) operating at a

sampling frequency of 1000 MS/s, a range of RF (Radio Frequency) signals can be produced from 200 kHz to

400 MHz. Additionally, 16 independently-programmable digital TTL outputs are provided to generate user-defined

pulse sequences.

The DDS-IV is a complete high frequency excitation system for high field NMR, MRI, NQR, spintronics,

quantum computing, and related resonance and testing technologies up to 400 MHz.

Key Features
• Two independently-programmable DDS cores capable of outputting RF signals up to 400 MHz,

each with 256/128/128 programmable frequency/phase/amplitude registers

• Each DDS core is equipped with quadrature outputs for a total of four RF outputs.

• 16 independently-programmable digital TTL outputs with pulse resolutions of 8 ns.

• Advanced pulse-program flow including loops, subroutines, and hardware/software interrupts.

• 256 programmable interrupts (interrupts are immediate and always active).

http://www.spincore.com 1 2015/07/02

Figure 1: The PulseBlasterDDS-IV-1000 DDS cores produce patterns in the base-band range of 0.2 to 62.5 MHz.

These signals are then digitally up-converted and placed in the desired output band up to 400 MHz.

PulseBlaster
+

Direct Digital Synthesis

0.2 – 62.5 MHz

Digital
Up-Conversion

RF Out

0.2 – 400
MHz

PulseBlasterDDS-IV-1000
Product Architecture

Figure 2 presents the general architecture of the PulseBlasterDDS-IV-1000 system. The three major building

blocks of the DDS-IV are the PulseBlaster timing core (1), the two independent DDS Cores (2), and the AD9148

Quad DAC (3).

http://www.spincore.com 2 2015/07/02

Figure 2: Block diagram of the PulseBlasterDDS-IV-1000 architecture. The PulseBlaster core provides precision

timing and control which directs the DDS units that provide samples to the AD9148 Quad DAC. The PulseBlaster core

also outputs 16 independent digital TTL pulses, each with a timing resolution of 8 nanoseconds.

PulseBlasterDDS-IV-1000

Direct Digital Synthesis

DDS Core 0 DDS Core 1

Timing and Control

PulseBlaster
Core

AC / DC

PLL
(125 MHz Out)

50 MHz
Clk

Digital Up-Conversion

AD9148 RF Outputs

TTL Outputs

100 – 240V
AC Input

USB
Control

10 MHz
Ext Ref

Interrupts Trigger In

1

2

3

PulseBlasterDDS-IV-1000

Figure 3, shown above, presents the architecture of the Direct Digital Synthesis (DDS) core. There are two

DDS cores in the DDS-IV system which provide independent RF output channels. The NCO (Numerically

Controlled Oscillator) provides the quadrature data for each RF output channel.

The NCO operates with a 125 MHz clock frequency and is configured by selecting one of the 256 user-

programmable frequency registers. There are also 128 programmable amplitude and phase registers to adjust

the output RF amplitude and initial RF phase.

The PulseBlaster Core controls the timing and output of the RF pulses and provides the necessary control

signals to select the desired DDS frequency, phase, and amplitude registers. Additionally, the PulseBlaster core

generates 16 independently-programmable digital TTL outputs.

http://www.spincore.com 3 2015/07/02

Figure 3: Block diagram of the Direct Digital Synthesis (DDS) core. The PulseBlaster core provides the control
signals which configure the DDS cores to output signals at the desired frequency and amplitude.

NCO

Frequency
Registers

Amplitude
Registers

Gate

DDS Core

125 MHz
In

 Frequency and Amplitude
control from pulse program

RF Enable

I

Q

Attenuator

Quadrature
Output

PulseBlasterDDS-IV-1000
Figure 4 diagrams the interface between the PulseBlasterDDS cores and the AD9148 DAC. The AD9148

contains three configurable digital half-band interpolation filters which can be configured to shift the base-band

frequencies produced by the DDS cores (0-62.5 MHz) up to higher frequencies (up to 400 MHz). When all of the

half-band interpolation filters are used together, the maximum interpolation ratio of 8x is achieved, and the

AD9148 will interpolate eight samples of data for each sample it receives from the DDS cores.

In order to ensure that the half-band interpolation filters can be adjusted to produce all frequencies up to 400

MHz, the DDS generates two quadrature outputs, each consisting of two parts: an In-Phase channel (no phase

offset) and Quadrature channel (90-degrees offset) which represent a single signal.

Each DDS core outputs a quadrature stream into one of the two data paths within the AD9148. The two

complex data paths within the AD9148 feed the four DAC outputs. Consequently, only two of the DAC outputs

(Output 1 and Output 3) generate independent RF waveforms. Outputs 2 and 4 produce the the same signal as

Outputs 1 and 3 with a phase offset of 90 degrees.

http://www.spincore.com 4 2015/07/02

Figure 4: Overview the DDS/AD9148 DAC interface. The DDS cores output quadrature data (I and Q channels) to

the AD9148. The digital up-conversion feature of the AD9148 consists of half-band interpolation filters that are used to

shift base-band frequencies from the DDS cores to higher frequencies (up to the Nyquist frequency). Any desired output

higher than 62.5 MHz requires the use of these digital up-conversion features.

DDS0
I

I

Q

Q

DAC1

DAC2

DAC3

DAC4

RF Out 1

RF Out 2

RF Out 3

RF Out 4

Digital
Up-Conversion

Digital
Up-ConversionDDS1

AD9148

PulseBlasterDDS-IV-1000

Product Specifications

Parameter Min Typical Max Units
Analog Output D/A sampling rate 1000 MHz

D/A sampling precision 14 bits
Output voltage range (peak-

peak, terminated with a 50 Ohm

load)

1.05 V

Phase resolution 0.9 deg.
Frequency resolution 0.12 Hz
TTL to RF Latency 508 ns
Frequency Registers per DDS 256 registers
Phase Registers per DDS 128 registers
Amplitude Registers per DDS 128 registers

Digital Output Number of digital TTL outputs 16 bits
Logical 1 output voltage 3.31 V
Logical 0 output voltage 0 V
Output drive current 66 mA
Rise/Fall time < 1 ns

Digital Input Number of Interrupts 256
HW Interrupt Activation Level 2.5 3.3 V
HW Trigger/Reset Activation

Level
0.8 V

10 MHz Clock Input Reference

Voltage, Square Wave
3.3 V

Pulse Program Number of instruction words 8K words

Pulse timing resolution 8 ns

Instruction time length 40 ns 693 days

Power Input AC Voltage 110 240 V

AC Current 5 A

AC Frequency 50 60 Hz

Table 1: Technical specifications for the PulseBlasterDDS-IV-1000.

1 This is the un-terminated voltage. The required minimum logical high TTL level of 2.5 V is attained when
the load impedance is 150 Ω.

http://www.spincore.com 5 2015/07/02

PulseBlasterDDS-IV-1000

II. System Installation

To install the PulseBlasterDDS-IV-1000 system, please complete the following steps:

1. Download and install the latest PulseBlasterDDS-IV API version for your architecture available at:
http://www.spincore.com/products/PulseBlasterDDS-IV-1000 under “Manuals, etc.” This C/C++-based
API provides a custom programming interface developed by SpinCore Technologies, Inc. for use with
the PulseBlasterDDS-IV.

2. Connect the provided USB 2.0 and power cables to the PulseBlasterDDS-IV.

3. Turn on the PulseBlasterDDS-IV using the toggle switch on the front. The internal fan should be audible.

4. Verify the PulseBlasterDDS-IV system is found by Windows by verifying it is listed in the Windows
device manager.

We recommend running the pre-compiled example programs in the examples directory to verify that your

device is functioning properly. If your device is not found by the operating system, please verify that it is powered

on and that you have installed the proper API version which matches the operating system of your computer.

Testing the PulseBlasterDDS-IV-1000

Once the PulseBlasterDDS-IV system has been installed properly, you are ready to test the functionality of
your device with the example programs provided by the DDS-IV API installer package . You can begin by running
the pre-compiled examples programs and verifying that the output matches the description displayed after
execution. After the device functionality has been verified, you can modify the C source files as needed to start
making your own programs. For information on compiling examples using Microsoft Visual Studio, please see:
http://www.spincore.com/support/PBDDSIV/MSVC/msvc_tutorial.html. All example programs are easily verified
using an oscilloscope triggered by any of the TTL outputs.

The program pbddsiv_read_firmware_example reads the DDS-IV firmware register and displays the value.
This is the simplest provided example program and should be executed to verify device communication.

The program pbddsiv_pulsed_rf_example provides a simple example outputting RF pulses on each RF
output. RF outputs one and two output a 10 MHz sine wave. RF outputs three and four output a 20 MHz sine
wave. The pulse is on for 10.0 us, off for 5.0 us, then repeats indefinitely.

The program pbddsiv_4phase_pulsed_rf_example provides an example outputting four RF pulses on each
channel, each time with a different phase. Each RF channel outputs four pulses on for 10.0 us, off for 5.0 us,
with phase offsets of 0°, 90°, 180°, and 270° in sequence. The sequence then repeats indefinitely.

The program pbddsiv_pulsed_sinc_example provides an example of using the AWG to modulate the output
RF signal with a sinc-wave envelope.

The program pbddsiv_frequency_modulation_example demonstrates the zero-latency continuous-frequency-
switching capability of the DDS, and demonstrates how to select the RF baseband using the DDS-VI API.

http://www.spincore.com 6 2015/07/02

http://www.spincore.com/support/PBDDSIV/MSVC/msvc_tutorial.html
http://www.spincore.com/products/PulseBlasterDDS-IV-1000

PulseBlasterDDS-IV-1000

III. Using the PulseBlasterDDS-IV-1000

The DDS-IV API available on our website at: http://www.spincore.com/products/PulseBlasterDDS-IV-1000/

provides a C/C++ interface for controlling and configuring the PulseBlasterDDS-IV system. The DDS-IV API

provides easy-to-use functions for controlling the PulseBlaster core, on-chip DDS units, and the external AD9148

quad DAC. Users can easily specify pulse programs and configure each RF output.

For specifics on using each function provided by the DDS-IV API, please see the PDF available in the “doc”

directory installed by the DDS-IV API installer. This PDF provides a detailed description of each function and any

arguments required.

Controlling the PulseBlasterDDS-IV-1000

This section describes the function and use of each feature of the PulseBlasterDDS-IV API.

The PulseBlasterDDS-IV-1000 is a versatile excitation system with several programming options. The

following steps outline the basic approach to programming and running a program on the DDS-IV:

1. Load frequency, phase, and amplitude registers with the desired values.

2. Configure the external DAC settings using the function pbddsiv_configure_interpolation_mode(...)

3. Specify a pulse program which will control the timing of the experiment.

4. Trigger the pulse program. The experiment will then proceed autonomously.

The PulseBlasterDDS-IV API is a C-based software library used for controlling your PulseBlasterDDS-IV

system. Using this library you can program and configure your PulseBlasterDDS-IV.

The most straightforward way to interface with this library is with a C/C++ program, and the API definitions are

described in this context. However, virtually all programming languages and software environments (including

software such as LabView and MATLAB) provide mechanisms for accessing dynamically-linked libraries such as

the PulseBlasterDDS-IV API library: pbddsiv.dll.

We recommend the user look at the provided example programs to demonstrate how to use the

PulseBlasterDDS-IV. The example programs provide an overview of using all of the provided API functions.

http://www.spincore.com 7 2015/07/02

http://www.spincore.com/products/PulseBlasterDDS-IV-1000/

PulseBlasterDDS-IV-1000
The PulseBlasterDDS-IV is a highly versatile excitation system, and as such there are many possible

approaches to controlling the device. However, most applications can be programmed using the following steps:

1. Select the device (if using more than one device.)

2. Initialize the device and program the default device parameters.

3. Program the required DDS frequency, amplitude, and phase registers, as well as the DDS shape

memory (if using the AWG feature.)

4. Specify the interpolation settings (if frequencies about 0 to 62.5 MHz are required.)

5. Specify a pulse program which will control the TTL output and RF output configuration and timings.

6. Program any interrupt vectors using the instruction address returned from the previous step.

7. Trigger the pulse program.

Selecting and Initializing the System

By default, the API uses the first PulseBlasterDDS-IV device found in the system. In order to select between
multiple DDS-IV systems connected to a host, it is necessary to first call the pbddsiv_select_device(..) routine with
the appropriate device number. To determine the number of your device when multiple DDS-IV systems are
connected, please check the Device Manager device numberings.

Before using any API functions to control your system, it is first initialize the device using the pbddsiv_init()
routine. The pbddsiv_init() routine opens a handle to the selected device allowing the API to communicate with it.

Once the device has been initialized, it is necessary to set default PulseBlaster, DDS, and DAC settings using
pbddsiv_set_defaults(). Next, the clock frequency must be specified so that the API knows the operating clock
frequency. This can be accomplished using pbddsiv_set_core_clock(..). This function takes the frequency (in
MHz) at which the PulseBlaster core is operating. Please see Example 1 below.

pbddsiv_select_device(1); //(Optional) Select a specific device (in this case, device 1) 0 is default

//Initialize the PulseBlasterDDS-IV
if(pbddsiv_init() != 0) {
 fprintf(stderr, "Failed to initialize DDS-IV device. Please see debug log for more information.\n");
 system("pause");
 return -1;
}

//Set the default DAC/PulseBlaster settings.
pbddsiv_set_defaults();

//Set the core clock frequency - typically 125.0 MHz
pbddsiv_set_core_clock(125.0);

pbddsiv_reset(); //Reset the device state before use

/* Other device programming */

pbddsiv_close(); //Always close the device handle before exiting the program

Example 1: Selecting and initializing the PBDDS-IV.

http://www.spincore.com 8 2015/07/02

PulseBlasterDDS-IV-1000
Configuring the DDS Units

The PulseBlasterDDS-IV contains two independently-programmable DDS units. Each DDS provides
quadrature data to one of the two channels of the AD9148 DAC. The RF output frequency, amplitude, and initial
phase of each DDS is controlled by selecting from a bank of on-board registers. Each DDS contains its own set of
frequency, amplitude, and phase registers. The registers should be programmed with the appropriate values after
device initialization using the PBDDS-IV API.

Each DDS register bank can be selected for programming using the pbddsiv_start_programming(..) function.
This function allows the user to specify the target device type, device number to program, and target device
resource. For example, pbddsiv_start_programming(DDS, 0, FREQUENCY_REGISTERS) selects the frequency
registers of DDS 0 for programming. Each instruction in the pulse program is capable of selecting the desired
register during execution. The available registers are listed in Table 2.

Device Type Device Number Resource Type Number of Registers

DDS 0 FREQUENCY_REGISTERS 256

DDS 0 PHASE_REGISTERS 128

DDS 0 AMPLITUDE_REGISTERS 128

DDS 0 SHAPE_PERIOD_REGISTERS 7

DDS 1 FREQUENCY_REGISTERS 256

DDS 1 PHASE_REGISTERS 128

DDS 1 AMPLITUDE_REGISTERS 128

DDS 0 SHAPE_PERIOD_REGISTERS 7

Table 2: Available DDS Registers

//Configure DDS-0
pbddsiv_start_programming(DDS, 0, FREQUENCY_REGISTERS);
 pbddsiv_program_frequency(5.0);
 pbddsiv_program_frequency(10.0);
pbddsiv_stop_programming();

pbddsiv_start_programming(DDS, 0, PHASE_REGISTERS);
 pbddsiv_program_phase(0.0);
pbddsiv_stop_programming();

pbddsiv_start_programming(DDS, 0, AMPLITUDE_REGISTERS);
 pbddsiv_program_amplitude(1.0);
pbddsiv_stop_programming();

//Configure DDS-1
pbddsiv_start_programming(DDS, 1, FREQUENCY_REGISTERS);
 pbddsiv_program_frequency(20.0);
 pbddsiv_program_frequency(15.0);
pbddsiv_stop_programming();

pbddsiv_start_programming(DDS, 1, PHASE_REGISTERS);
 pbddsiv_program_phase(0.0);
pbddsiv_stop_programming();

pbddsiv_start_programming(DDS, 1, AMPLITUDE_REGISTERS);
 pbddsiv_program_amplitude(1.0);
pbddsiv_stop_programming();

Example 2: Configuring the DDS registers.

http://www.spincore.com 9 2015/07/02

PulseBlasterDDS-IV-1000
In addition to the DDS registers, each DDS has a programmable shape memory which can be used to specify

an envelope for the RF output pulse. In order to use the AWG shape feature, the user first program the DDS
shape memory, and then program the DDS shape-period registers.

The function pbddsiv_load_dds_shape(..) takes a target DDS number and a floating-point array of 1024
values. Each value in the array specifies a scale factor which is applied to the output RF waveform over one
shape period. Each value in the array must be between -1.0 and 1.0 inclusive, or the function will return an error.

Once the shape memory has been programmed, the user must also program the shape-period registers.
Each register stores a time value which refers to how long it takes to iterate over the shape memory once. For
example, if the pulse duration is 20.0 us, and the shape-period is 10.0 us, the shape envelope will be output twice
per pulse duration. To use the shape feature, the pulse program must use pbddsiv_program_inst_shape(...).

//Generate sinc shape data with two lobes
shape_make_sinc (dds_shape_data, 2);

//Load DDS shape information
pbddsiv_load_dds_shape(0, dds_shape_data);
pbddsiv_load_dds_shape(1, dds_shape_data);

pbddsiv_start_programming(DDS,0, SHAPE_PERIOD_REGISTERS);
 pbddsiv_program_shape_period(5.0 * us);
pbddsiv_stop_programming();

pbddsiv_start_programming(DDS, 1, SHAPE_PERIOD_REGISTERS);
 pbddsiv_program_shape_period(5.0 * us);
pbddsiv_stop_programming();

Example 3: Programming the DDS-IV shape feature.

Configuring the AD9148 Interpolation Settings

The DDS-IV API provides a simple method of configuring the interpolation settings (and therefore baseband
frequency) of the AD9148 DAC. The function pbddsiv_configure_interpolation_mode(..) takes a
interpolation_settings_t data structure which contains the interpolation settings to be programmed. This structure
contains two fields, factor and mode, as defined in the header file “ddsivapi.h”. Factor refers to the interpolation
factor (i.e., number of interpolation filters used). Mode refers to the interpolation filter settings. Valid interpolation
settings can be found in Table 3 below.

Mode Compatible Factor Settings Baseband Frequency
Mode_DC 2, 4, or 8 0 MHz

Mode_Fs8 2, 4, or 8 125 MHz

Mode_Fs4 2, 4 or 8 250 MHz

Mode_3Fs8 4 or 8 375 MHz

Mode_Shifted_DC 8 62.5 MHz

Mode_Shifted_Fs8 8 187.5 MHz

Mode_Shifted_Fs4 8 312.5 MHz
Table 3: Valid interpolation settings values and resulting base-band frequency. These modes are further

illustrated in Figure 5.

http://www.spincore.com 10 2015/07/02

PulseBlasterDDS-IV-1000

It is important to note that the function pbddsiv_set_defaults() should be called prior to configuring the
interpolation settings to set the default values for all of the registers found on the AD9148.

pbddsiv_set_defaults(); //Ensure all registers have been programmed

//Configure AD9148 DAC
struct interpolation_settings_t settings;

settings.factor = 8;
settings.mode = Mode_Fs8; //Baseband setting of 125 MHz

pbddsiv_configure_interpolation_mode(&settings); //Write the settings

Example 4: Programming the interpolation settings.

Real Time vs. Slow Software Control

As stated previously, the PulseBlasterDDS-IV-1000 API allows you to input base-band frequencies of up to

62.5 MHz in real time using the DDS cores and PulseBlaster timing core. Using the AD9148 DAC software, you

can shift the DDS frequencies up to cover the range from DC to 400 MHz.

http://www.spincore.com 11 2015/07/02

Figure 5: Frequency bands corresponding to their respective coarse modulation modes.

Figure 6: The slow software AD9148 interface is used to output frequencies across the
entire output range, DC to 400 MHz. The PulseBlaster timing core provides real time
amplitude and frequency control in the base band (0 to 62.5 MHz)

DDS Core

Base Band

0 – 62.5 MHz

Digital Up-Conversion

AD9148

400 MHz

0 MHz (DC)

375 MHz (3Fs/8)

312.5 MHz (Shifted Fs/4
 + Premodulation)

250 MHz (Fs/4)

187.5 MHz (Shifted Fs/8
 + Pre-modulation)

125 MHz (Fs/8)

62.5 MHz (Shifted DC
 + Pre-modulation)

Real time Amplitude
and Frequency Control,

0 – 62.5 Mhz, via the
PulseBlaster Timing Core

Slow Software Control via the
AD9148 SPI Configuration Software

Shifted Output Frequency (AD9148 Setting)

PulseBlasterDDS-IV-1000
Writing Pulse Programs

After the device has been selected, initialized, and the DDS units have been configured, it is time to program
the pulse program which controls the TTL and RF outputs. Similar to programming the DDS register banks, the
function pbddsiv_start_programming(..) is used to start programming the PulseBlaster core instruction memory. To
program core 0 we use: pbddsiv_start_programming(PULSEBLASTER, 0, INSTRUCTION_MEMORY).

pbddsiv_program_inst pbddsiv_program_inst_shape
Argument Type Description Argument Type Description
flags uint32_t TTL flag values (16 bits). flags uint32_t TTL flag values (16 bits).

oe uint32_t[2] RF output enable. oe uint32_t[2] RF output enable.

phase_rst uint32_t[2] Reset DDS phase. phase_rst uint32_t[2] Reset DDS phase.

freq uint32_t[2] Frequency register number. freq uint32_t[2] Frequency register
number.

phase uint32_t[2] Phase register number. phase uint32_t[2] Phase register number.

amplitude uint32_t[2] Amplitude register number. amplitude uint32_t[2] Amplitude register
number.

Inst Instruction See instruction table. shape_period uint32_t[2] Shape period register
number.

inst_data uint32_t See instruction table. Inst Instruction See instruction table.

time_sec double Instruction duration in
seconds.

inst_data uint32_t See instruction table.

time_sec double Instruction duration in
seconds.

Table 4: Breakdown of the pbddsiv_program_inst(..) and pbddsiv_program_inst_shape(..) functions.

For ease of use, the API defines a mnemonic constant which refers to each instruction opcode. Please see
Table 5 for a list of each op code, the associated mnemonic constant, and information about the instruction data.
Example 5 below illustrates how to write a simple pulse program to the PBDDS-IV.

//Simple pulse program example of a single RF pulse on each RF output.
pbddsiv_start_programming(PULSEBLASTER, 0, INSTRUCTION_MEMORY);

phase_reset[0] = phase_reset[1] = 1;
pbddsiv_program_inst(0x0000, oe, phase_reset, frequency, phase, amplitude, CONTINUE, 0, 5.0 * us);

phase_reset[0] = phase_reset[1] = 0;
oe[0] = oe[1] = 1;
address = pbddsiv_program_inst(0xFFFF, oe, phase_reset, frequency, phase, amplitude, CONTINUE, 0,

10.0 * us);

phase_reset[0] = phase_reset[1] = 1;
oe[0] = oe[1] = 0;
pbddsiv_program_inst(0x0000, oe, phase_reset, frequency, phase, amplitude, BRANCH, address, 5.0 * us);

pbddsiv_stop_programming();

Example 5: Programming a pulse program using the pbddsiv_start_programming(..) interface.

http://www.spincore.com 12 2015/07/02

PulseBlasterDDS-IV-1000
Op Code # Instruction inst_data field Function

0 CONTINUE Unused Program execution
continues to the next

instruction.

1 STOP Unused Stop execution of
program. Aborts the

operation of the micro-
controller with no control
of output states (all TTL

values remain from
previous instruction).

Recommended that prior
to the STOP op-code a

short interval (minimum six
clock cycles) be added to
set the output states as

desired.

2 LOOP Number of desired loops
(must be at least 1).

Specify beginning of a
loop. Execution continues
to next instruction. Data

used to specify number of
loops.

3 END_LOOP Address of the beginning
of the loop.

Specify end of a loop.
Execution returns to
begging of loop and

decrements loop counter.

4 JSR Address of the first
subroutine instruction.

Program execution jumps
to beginning of a

subroutine.

5 RTS Unused Program execution returns
to the instruction after JSR

was called.

6 BRANCH Address of the instruction
to branch to.

Program execution
continues at specified

instruction. This behaves
like the GOTO statement

found in many
programming languages.

7 LONG_DELAY Number of desired loops.
Must be at least 2.

Used to long intervals.
Data field specifies a

multiplier of the delay field.
Execution continues at the

next instruction.

8 WAIT Unused Program execution pauses
and waits for a software of

hardware trigger to
resume it.

Table 5: PulseBlaster Instruction Set

http://www.spincore.com 13 2015/07/02

PulseBlasterDDS-IV-1000

Sample Output

In this section you will find oscilloscope screen captures of the PulseBlasterDDS-IV-1000 system running

through its example and other test programs. All screen shots were captured with a Tektronix TDS 2024B. This

scope greatly attenuates high frequency signals over 200 MHz.

http://www.spincore.com 14 2015/07/02

Figure 7: A 1000 ns 1 MHz RF pulse is shown in the base band with no digital up-conversion features
enabled. The 500 ns stabilization time after the RF gate is disabled is associated with the AD9148 DAC at
lower frequencies.

PulseBlasterDDS-IV-1000

http://www.spincore.com 15 2015/07/02

Figure 9: A 600 ns RF pulse at 10 MHz is shown in the base band with no digital up-conversion
features turned on.

Figure 8: The digital up-conversion option “Fs/8” has been applied to the signal from Figure 7. The
signal is shifted up by one-eight of the DAC sampling rate, or 125 MHz.

PulseBlasterDDS-IV-1000

http://www.spincore.com 16 2015/07/02

Figure 10: The digital up-conversion option “Shifted DC with Pre-modulation” has been applied to the
signal from Figure 9. The signal is shifted up 62.5 MHz.

Figure 11: The digital up-conversion option “Fs/8” has been applied to the signal from Figure 9. The
signal is shifted up 125 MHz.

PulseBlasterDDS-IV-1000

http://www.spincore.com 17 2015/07/02

Figure 12: The digital up-conversion option “Shifted Fs/8 with Pre-modulation” has been applied to the
signal from Figure 9. The signal is shifted up 187.5 MHz.

Figure 13: The digital up-conversion feature “Fs/4” has been applied to the signal from Figure 9. The
signal has been shifted up 250 MHz.

PulseBlasterDDS-IV-1000

http://www.spincore.com 18 2015/07/02

Figure 14: The digital up-conversion feature “Shifted Fs/4 with Pre-modulation” has been applied to the
signal from Figure 9. The signal has been shifted up 312.5 MHz.

Figure 15: We have zoomed in on the signal in Figure 14 in order to show the integrity of the sinusoid.
The signal is attenuated due to the oscilloscope.

PulseBlasterDDS-IV-1000

Figure 16 below shows the agile frequency switching capability of the PulseBlasterDDS-IV.

http://www.spincore.com 19 2015/07/02

Figure 16: A demonstration of the agile frequency switching capabilities of the DDS-IV system.
Channel 1 shows a transition from 40 MHz to 10 MHz and channel 2 shows a transition from 60 MHz to 15
MHz. The TTL pulse has been compensated to synchronize the TTL pulse with the RF pulse.

Figure 17: This screen capture shows the same signals from Figure 16 but we have zoomed in on the
frequency transitions. You can see that the frequency switching is instantaneous.

PulseBlasterDDS-IV-1000

http://www.spincore.com 20 2015/07/02

Figure 18: In this example we take a closer look at the signal on channel 1 from Figure 16. The
AD9148 digital up-conversion features have been enabled to increase the frequency of the RF output. With
AD9148 shifted DC coarse modulation and pre-modulation enabled the resulting signal transitions from
102.5 MHz to 72.5 MHz.

Figure 19: This image is shows the same signal from Figure 18 but we have zoomed in on the
frequency transition. The transition is still instantaneous with AD9148 digital up-conversion enabled.

PulseBlasterDDS-IV-1000

http://www.spincore.com 21 2015/07/02

Figure 20: The above images shows a 60 ns RF pulse at 135 MHz.

PulseBlasterDDS-IV-1000

http://www.spincore.com 22 2015/07/02

Figure 21: This image demonstrates the agile amplitude switching of the DDS-IV. A 75 MHz wave is
shown switching from full scale to half scale and finally to quarter scale voltage output.

Figure 22: This image shows the same signal as in Figure 21 but we have zoomed in on the transition
from full scale to half scale voltage.

PulseBlasterDDS-IV-1000
The next image demonstrates the effects of the 0.5 us latency, as mentioned in Table 1. The frequency of the

wave is in the base band at 10 MHz so that it can be seen easily. CH1 shows the TTL pulse while CH4 shows the

RF pulse.

The next figure shows how latency compensation can be used to synchronize the TTL pulse with the RF

pulse. Once again, the RF wave is in the base band so that it can be seen easily.

http://www.spincore.com 23 2015/07/02

Figure 23: Demonstration of the 0.5 us latency. There is a 508 ns delay associated with the AD9148.
At 1 GHz this equates to roughly 0.5 us.

Figure 24: Latency compensation demonstration.

PulseBlasterDDS-IV-1000
In the figure below, you can see the effects of the latency compensation using a 135 MHz output frequency.

This was obtained using the same base band frequency as in Figure 24 above. In this case, the AD9148 digital

up-conversion has shifted the frequency by 125 MHz (Fs/8 coarse modulation).

http://www.spincore.com 24 2015/07/02

Figure 25: Latency compensation at 135 MHz.

PulseBlasterDDS-IV-1000

The figure below demonstrates the arbitrary-waveform feature of the DDS-IV. Each DDS's shape memory
can be programmed independently with 1024 floating-point values describing the shape envelope.

http://www.spincore.com 25 2015/07/02

 (a) Sinc-modulated RF pulses (b) Single sinc lobe

Figure 27: Example of the arbitrary waveform-generation (AWG) feature of the DDS-IV. The RF
pulse is modulated by a sinc envelope programmed by the user during DDS-IV configuration.

(a) No
phase offset (b) 90-degree phase offset

(c) 180-degree phase offset (d) 270-degree phase offset

Figure 26: The PulseBlasterDDS-IV allows for selection of the initial RF-output phase using
 any of its 128 programmable-phase registers. The images above demonstrate selection between four

phase registers with (a) no offset, (b) 90-degree offset, (c) 180-degree offset, and (d) 270-degree offset.

PulseBlasterDDS-IV-1000
API Reference

The following tables provides an overview of the API functions provided by the PulseBlasterDDS-IV API.

Unless otherwise specified, each function returns 0 on success.

Function Prototype Function Description
int pbddsiv_init() Initialize the currently selected PBDDS-IV device.

MUST be called before any other functions.

int pbddsiv_close() Close all open device handles.

int pbddsiv_count(unsigned int *count) Count the number of devices in the system.
• count: Variable to receive the number of

DDS-IV systems detected.

int pbddsiv_set_defaults() Set the default settings for the PulseBlasterDDS-IV
including DAC registers.

int pbddsiv_get_firmware_id(unsigned int *fw) Get the firmware ID of the currently selected device.
• fw: Variable to receive the firmware ID of

the selected DDS-IV system.

int pbddsiv_get_status(unsigned int *status) Read the status register of the currently selected
device.

• status: variable to receive the status
register value.
◦ Bit 0 – Stopped
◦ Bit 1 – Reset
◦ Bit 2 – Running
◦ Bit 3 – Waiting

int pbddsiv_trigger() Trigger the PulseBlaster DDS-IV pulse program.

int pbddsiv_reset() Stop DDS-IV execution and reset the program
counter to the start of the program.

int pbddsiv_set_core_clock(double frequency) Set core clock frequency.
• frequency: frequency (in MHz).

int pbddsiv_set_interrupt_address(unsigned int
interrupt_number, unsigned int address)

Set the interrupt address for a specified interrupt
number.

• interrupt_number: The interrupt vector
number to set the interrupt vector for.

• address: The address of the PulseBlaster
instruction.

int pbddsiv_set_interrupt_source(unsigned int src) Set the interrupt source for interrupt vectors.
• src: Value representing the source

◦ 0 – hardware source (TTL inputs)
◦ 1 – software source (API calls)

int pbddsiv_trigger_sw_interrupt(unsigned int int) Send a software interrupt trigger.
• int: Trigger a software interrupt. Interrupt

source must be set to software.
Table 6: PulseBlasterDDS-IV API Definition.

http://www.spincore.com 26 2015/07/02

PulseBlasterDDS-IV-1000
Function Prototype Function Description
int pbddsiv_get_last_interrupt(unsigned int *int) Get the interrupt vector of the last interrupt that was

triggered.

int pbddsiv_set_flag_defaults(unsigned int flags[4]) Set the default flag values of all 128 TTL flags of the
PulseBlasterDDS-IV (including internal TTL lines).

• flags: Array of four 32-bit values
representing all 128 TTL flags.
◦ Flag[0] – TTL bits 0 to 31
◦ Flag[1] – TTL bits 32 to 63
◦ Flag[2] – TTL bits 64 to 95
◦ Flag[3] – TTL bits 96 to 127

int pbddsiv_write(unsigned int addr, unsigned int
data)

Write a specific value to a specified register.
• addr: Register address.
• data: Data value to be written to the

specified register.

int pbddsiv_read(unsigned int addr, unsigned int
*data)

Read register at specified address.
• addr: Register address.
• data: Variable to receive read data into.

int pbddsiv_start_programming(unsigned int
device, unsigned int device_id, unsigned int
target)

Start programming a target device resource. Must
be called before any of the pbddsiv_program_*
functions.

• Device: Device type (DDS or
PULSEBLASTER)

• device_id: Number of the device
• Target: Target resource in the selected

device to progam
◦ FREQUENCY_REGISTERS
◦ AMPLITUDE_REGISTERS
◦ PHASE_REGISTERS
◦ SHAPE_PERIOD_REGISTERS
◦ INSTRUCTION_MEMORY

int pbddsiv_stop_programming() Stop programming the selected device.

int pbddsiv_program_frequency(double frequency) Program the next frequency register with the
specified frequency. Must be programming a DDS
FREQUENCY_REGISTER.

• frequency: Frequency value (in MHz)

int pbddsiv_program_phase(double phase) Program the next phase register with the specified
phase. Must be programming a DDS
PHASE_REGISTER.

• phase: Phase value (in degrees)

int pbddsiv_program_shape_period(double period) Program the next frequency register with the
specified frequency. Must be programming a DDS
SHAPE_PERIOD_REGISTER

• period: Shape period value (in seconds)

int pbddsiv_program_amplitude(double scale) Program the next frequency register with the
specified frequency. Must be programming a DDS
AMPLITUDE_REGISTER.

• scale: Scale value (0 to 1.0)
Table 7: PulseBlasterDDS-IV API Definition cont.

http://www.spincore.com 27 2015/07/02

PulseBlasterDDS-IV-1000

Function Prototype Function Description
int pbddsiv_program_inst(unsigned int flags,

const unsigned int oe[2],
const unsigned int phase_reset[2],
const unsigned int frequency[2],
const unsigned int phase[2],
const unsigned int amplitude[2],
unsigned int inst,

 unsigned int inst_data,
double time_sec)

Program an instruction without shape feature to
program memory.

• Flags: TTL flag values.
• Oe: Array specifying the output-enable for

each DDS.
• phase_reset: Array specifying the phase-

reset bit for each DDS.
• Frequency: Frequency register select for

each DDS.
• Phase: Phase register select for each

DDS.
• Ampltiude: Amplitude register select for

each DDS.
• Instruction: Instruction opcode.
• inst_data: Data argument for the

instruction.
• time_sec: Instruction duration (in

seconds)
Returns the instruction address.

int pbddsiv_program_inst_shape(unsigned int flags,
const unsigned int oe[2],
const unsigned int phase_reset[2],
const unsigned int frequency[2],
const unsigned int phase[2],
const unsigned int amplitude[2],
const unsigned int shape_period[2],
unsigned int inst,
unsigned int inst_data,
double time_sec)

Program an instruction with shape feature to
program memory.

• Flags: TTL flag values.
• Oe: Array specifying the output-enable for

each DDS.
• phase_reset: Array specifying the phase-

reset bit for each DDS.
• Frequency: Frequency register select for

each DDS.
• Phase: Phase register select for each

DDS.
• Ampltiude: Amplitude register select for

each DDS.
• Shape_period: Shape period register

select. Value of 7 disables shape.
• Instruction: Instruction op code.
• inst_data: Data argument for the

instruction.
• time_sec: Instruction duration (in

seconds)
Returns the instruction address.

int pbddsiv_configure_interpolation_mode(
const struct interpolation_settings_t *settings);

Configure the interpolation mode settings.
• Settings: Interpolation mode settings

structure with the following fields:
◦ Mode – Interpolation mode setting.
◦ Factor – Interpolation filters enabled.

int pbddsiv_log_set(const char *filename) Set output log name. filename: target file.

int pbddsiv_log_enable() Enable logging to log file.

int pbddsiv_log_disable() Disable logging.
Table 8: PulseBlasterDDS-IV API Definition cont.

http://www.spincore.com 28 2015/07/02

PulseBlasterDDS-IV-1000

IV. Connecting to the PulseBlasterDDS-IV-1000

Front Panel Connector Locations
The PulseBlasterDDS-IV-1000 system is housed in a 3U rack mount enclosure. The front panel contains all

of the ports needed to interact with the DDS-IV-1000. There are four main elements on the front panel of the

enclosure: the BNC connectors, a female DE9 (sometimes called a DB9) connector, a USB Type-B port and a DC

power supply on/off switch. The back panel contains the AC power cord connection and an AC on/off switch.

The BNC connectors provide the means of interfacing with the input and output signals of the

PulseBlasterDDS-IV-1000. The RF and digital outputs, 10 MHz reference input clock, and the trigger input are all

accessed via BNC connectors. The DE9 connector is used to interface with the interrupt input. The USB port is

used to communicate with the host PC. The front panel switch is used to turn the DDS-IV-1000 on and off when

the back panel AC switch is also on.

RF Outputs
The PulseBlasterDDS-IV-1000 has four RF outputs, all of which are accessed through female BNC

connectors. Figure 29 presents the numbering scheme for these outputs. Please note that independent

waveforms are generated by outputs 1 and 3; output 2 is the same as output 1 with a 90 degree phase offset.

Similarly, output 4 is a 90 degree phase shifted version of output 3. The source impedance is 50 Ohm.

http://www.spincore.com 29 2015/07/02

Figure 28: Front panel connector locations.

Figure 29: RF BNC output jacks.

PulseBlasterDDS-IV-1000

Digital Outputs
The 16 digital outputs of the PulseBlasterDDS-IV-1000 are accessible through female BNC connectors on the

front panel. The numbering of the bits is presented in Figure 30. The required minimum logical high TTL level of

2.5 V is attained when the load impedance is 150 Ω.

10 MHz Reference Clock Input

The PulseBlasterDDS-IV-1000 features a 10 MHz reference clock input that can be used to synchronize the

system to an external 10 MHz, square, 50% duty cycle, 3.3V-level clock signal. This signal is sent through a PLL

(phase locked loop), which creates the higher clock frequencies required by the PulseBlaster core, DDS cores,

and the AD9148 DAC.

The external 10 MHz reference can be connected before the board is powered on or during operation. The

PulseBlasterDDS-IV-1000 will automatically begin using the external reference once it detects that it is present.

Please note, however, that a power reset is required to switch back to the internal oscillator after removing the

external clock source.

http://www.spincore.com 30 2015/07/02

Figure 30: Numerical order of the digital outputs.

Figure 31: 10 MHz reference clock input label

PulseBlasterDDS-IV-1000
Trigger and Reset Input

The trigger input is used to start a pulse program that has been loaded into the instruction memory of the

PulseBlasterDDS-IV-1000. This input is used in tandem with the DE9 interrupt port, which can be used to

configure the instruction memory address that will be read from first when the trigger input is activated.

Doing so produces the same results as the pbddsiv_trigger() API function. The input is normally pulled high

and the maximum voltage that can be input to the connection is 3.3V.

The trigger input is active-low, meaning that inputting a low voltage level will cause the PBDDS-IV to be

triggered. The board is not triggered on a rising or falling edge. Please note that as long as the input to the

trigger is a logical-low voltage level, the board will be triggering.

The reset input is used to reset a pulse program to the beginning (the program counter is reset to 0). The

reset input is active-low, meaning that inputting a low voltage level will reset the pulse program running on the

PBDDS-IV. This is the same behavior as the pbddsiv_reset() API function. The input is normally pulled high and

the maximum voltage that can be input to the connection is 3.3V.

http://www.spincore.com 31 2015/07/02

Figure 32: HW trigger and reset input labels

PulseBlasterDDS-IV-1000
Interrupt Input

The DE9 interrupt connector, shown below in Figure 33, is used to control the 256 available interrupts on the

PulseBlasterDDS-IV-1000. Please note that in order to use this hardware interrupt control, you must enable

hardware interrupts as described in the API reference section.

The pin out for this connector is shown below in Table 9. Be sure to match this pin out exactly if you are

creating your own DE9 interrupt cable. Please note that every signal pin is active-high. The maximum voltage

level that can be asserted on a signal pin is 3.3 V, and the minimum voltage level is 0 V. As an example, asserting

a high logic level on interrupt bits 0, 3, and 4 while hardware interrupts are enabled in the API has the same effect

as the pbddsiv_trigger_sw_interrupt(0x19) function call does when software interrupts are enabled. Please note

that all the signal pins are weakly pulled high, so if no input is connected then the highest interrupt (0x255) is

always asserted in hardware.

Pin Number Pin Function

1 Interrupt bit 0

2 Interrupt bit 1

3 Interrupt bit 2

4 Interrupt bit 3

5 Interrupt bit 4

6 Interrupt bit 5

7 Interrupt bit 6

8 Interrupt bit 7

9 GND

Table 9: Interrupt Input Pin-out

http://www.spincore.com 32 2015/07/02

Figure 33: Pin out of the DE9 Interrupt connector

PulseBlasterDDS-IV-1000
If using a high input impedance oscilloscope to monitor the PulseBlasterDDS-IV-1000, place a resistor that

matches the characteristic impedance of the transmission line in parallel with the coaxial transmission line at the

oscilloscope input. (e.g., a 50 Ω resistor with a 50 Ω transmission line, see Figures 34 and 35 below). When using

an oscilloscope with an adjustable bandwidth, set the bandwidth to as large as possible. Failure to do so may

yield inaccurate readouts on the oscilloscope.

http://www.spincore.com 33 2015/07/02

Figure 34: Left - BNC T-Adapter and Right - BNC 50
Ohm resistor

Figure 35: BNC T-Adapter on the oscilloscope with coaxial
transmission line connected on the left and BNC 50 Ohm resistor connected
on the right, to terminate the line.

PulseBlasterDDS-IV-1000

V. Contact Information

SpinCore Technologies, Inc.

4631 NW 53rd Avenue, SUITE 103

Gainesville, Florida, 32653

USA

Telephone: +1-352-271-7383

Fax: +1-352-371-8679

Website: http://www.spincore.com

Web Contact Form: http://www.spincore.com/contact.shtml

VI. Document Information

A detailed revision history is available by contacting SpinCore Technologies, Inc at the address above.

If you have any feedback or questions, do not hesitate to contact us. We look forward to hearing from

each and every one of our customers!

From everyone at SpinCore, we appreciate you reading this manual to learn about your product.

http://www.spincore.com 34 2015/07/02

http://www.spincore.com/contact.shtml
http://www.spincore.com/

	I. Introduction
	Product Overview
	Product Architecture
	Product Specifications

	II. System Installation
	Testing the PulseBlasterDDS-IV-1000

	III. Using the PulseBlasterDDS-IV-1000
	Controlling the PulseBlasterDDS-IV-1000
	Selecting and Initializing the System
	Configuring the DDS Units
	Configuring the AD9148 Interpolation Settings
	Real Time vs. Slow Software Control
	Writing Pulse Programs
	Sample Output
	API Reference

	IV. Connecting to the PulseBlasterDDS-IV-1000
	Front Panel Connector Locations
	RF Outputs
	Digital Outputs
	10 MHz Reference Clock Input
	Trigger and Reset Input
	Interrupt Input

	V. Contact Information
	VI. Document Information

