
PulseBlasterESR DualCore 8M™

Owner’s Manual

SpinCore Technologies, Inc.
http://www.spincore.com

PulseBlasterESR DualCore 8M

Congratulations and thank you for choosing a design from SpinCore
Technologies, Inc.

We appreciate your business!

At SpinCore we aim to fully support the needs of our customers. If
you are in need of assistance, please contact us and we will strive to

provide the necessary support.

© 2009-2013 SpinCore Technologies, Inc. All rights reserved.
SpinCore Technologies, Inc. reserves the right to make changes to the product(s) or information herein without notice. PulseBlaster-
DualCore™, PulseBlaster™, SpinCore, and the SpinCore Technologies, Inc. logos are trademarks of SpinCore Technologies, Inc. All other
trademarks are the property of their respective owners.

SpinCore Technologies, Inc. makes every effort to verify the correct operation of the equipment. This equipment version is not intended for
use in a system in which the failure of a SpinCore device will threaten the safety of equipment or person(s).

www.spincore.com 2 2013/08/28

PulseBlasterESR DualCore 8M

Table of Contents
I. Introduction ... 4

Product Overview ... 4

Programming Paradigm ... 4

Specifications .. 5

 II. Installing and Using Your PulseBlasterESR DualCore ... 6

Installation ... 6

General API Programming Information .. 6

Triggering PulseProgram Execution ... 7

Stopping PulseProgram Execution ... 7

 III. Test Programs ... 8

Example Programs ... 8

Example 1 .. 8

Example 2 .. 9

Example 3 .. 10

Example 4 ... 11

Example 5 ... 12

Example 6 ... 12

 IV. Appendices ... 13

Appendix A: Connectors ... 13

HW_TRIG/RESET Header ... 13

CLOCK Header ... 14

Appendix B: Hardware Triggering/Reset .. 14

Appendix C: Synchronization of Multiple Boards ... 15

V. Related Products and Accessories ... 16

VI. Contact Information ... 17

 VII. Document Information ... 18

www.spincore.com 3 2013/08/28

PulseBlasterESR DualCore 8M

I. Introduction
Product Overview

The SpinCore PulseBlasterESR DualCore 8M is a dual-core PulseBlaster design implemented on a new
series of PulseBlasterESR PCI boards with up to 4194304 instruction per core. The dual-core design uses two
of SpinCore's proprietary PulseBlaster processor cores on a single chip. This new design allows the user to
program and run completely independent programs on each core, in parallel, while maintaining precise timing
synchronization between each core.

Diagram 1 : SpinCore PulseBlasterESR DualCore Design Architecture

Both cores are driven by the same single clock source at 500 MHz. They are synchronized to start at the
same time and run unique pulse programs/sequences concurrently. At 500 MHz, the available resolution of
each pulse/delay/interval is 2.00 ns (one clock cycle), the minimum pulse/delay/interval length is 18 clock cycles,
or 36 ns, and the maximum pulse/delay/interval length is 229 clock cycles (~1.07 seconds). Each core has 4M
(4194304) memory words available for writing pulse programs, i.e., there can be up to 4194304 lines in your
pulse program per core.

The basic architecture of the individual PulseBlaster processor core is described in multiple documents,
including the manuals for PulseBlaster and PulseBlasterESR boards, available on-line at the SpinCore's website
www.spincore.com. (Note that the PulseBlasterESR DualCore uses simplified PulseBlaster Cores that allow for
'continue' and 'stop' operations only.)

Programming Paradigm

 Each core can be individually programmed with an arbitrary sequence of intervals. Each interval can be of
unique length, and up to 4M intervals can be accommodated per sequence. Since each interval can be a pulse
or a delay, the programming of each core involves the loading of two basic parameters per interval: the output
state (logical 0 or 1), and the duration of the state (in nanoseconds, microseconds, milliseconds).

Each core can be independently programmed and triggered. The low-level interaction is accomplished
through a dedicated Application Programming Interface (API) package called the DualCore SpinAPI, available
for download on SpinCore's website: www.spincore.com. Virtually any higher-level application package
(Matlab, LabVIEW etc.) can interact with the board through the provided SpinAPI functions.

www.spincore.com 4 2013/08/28

PCI Interface

SRAM
4M Words

PulseBlasterTM

Timing Core 1

Host PC

SRAM
4M Words

PulseBlasterTM

Timing Core 0
Memory Controller

Memory Controller

Clock and Triggering
Circuitry

Flag 0

Flag 1

http://www.spincore.com/

PulseBlasterESR DualCore 8M

Specifications

Parameter Min Typ Max Units

Digital Outputs Number of Digital Outputs 2

Logical 1 Output Voltage 2.00(1) 3.3 V

Logical 0 Output Voltage 0 V

Output Drive Current 40 mA

Rise/Fall Time <1 ns

Digital Inputs
(HW_Trig, HW_Reset)

Logical 1 Input Voltage 1.7 3.3 V

Logical 0 Input Voltage -0.5 0.7 V

Pulse Program Number of Cores 1 2 > 4

Number of Instruction (per Core) 4194304 instructions

Pulse Resolution 2.00 ns

Pulse Length 36 ns ~1.07 s

Supported Operations CONTINUE, STOP

Table 1: Specifications of the PulseBlasterESR DualCore Design

(1)This value is with a 50Ω terminating resistance.

www.spincore.com 5 2013/08/28

PulseBlasterESR DualCore 8M

 II. Installing and Using Your PulseBlasterESR DualCore

Installation

 To install the board you must complete the following three steps:
 1) Install the latest MultiCore SpinAPI package, available here.

– The DualCore PulseBlasterESR board requires a specialized version of SpinAPI called the
MultiCore SpinAPI.

 2) Shut down computer, insert the PulseBlasterESR DualCore 8M card, and fasten the PC bracket.
– Your system should detect the board as a “PulseBlaster Multicore” device.

 3) Power up and follow the installation prompts.

Now you are ready to run the test programs provided in the SpinAPI package.

Note: To compile and run your own C programs, you may want to download the SpinAPI Tools package that
contains a pre-configured compiler; the SpinAPI Tools package is also available for download at the URL above.

General API Programming Information

Seven test programs (executables and their C source files) are available for testing. Assuming the default
installation, the test programs will be available on the computer at the following location: Start → All Programs
→ SpinAPI → Examples → DualCore Examples (the default installation location is:
“C:\SpinCore\SpinAPI\Examples\DualCore Examples”). The .c files can be modified and recompiled to create
custom test programs.

The SpinAPI programming paradigm is simple:
1.Include the “spinapi.h” in your C-file and link your executable to the SpinAPI library.
2.Initialize the API by calling the function pb_init(). This function must be called and return successfully in order
for the API to function properly.
3.If there is more than one board installed in your system, select the correct board by calling
pb_select_board(board_number).
4.Tell the API the board's internal operating clock frequency. This can be done by calling
pb_set_clock(clock_freq) with the appropriate internal operating frequency (500 MHz for the PulseBlasterESR
DualCore 8M.)
5.Start programming a PulseProgram memory device. This can be accomplished by calling
pb_start_programming(device). The available devices on the PulseBlasterESR DualCore 8M are the
CORE0_MEM (core 0's PulseProgram memory) and CORE1_MEM (core 1's PulseProgram memory.)
6.Begin programming a PulseProgram sequence. A CONTINUE instruction can be programmed by calling
pb_inst(flag, time_ns). A STOP instruction can be programmed by calling pb_inst_stop().
Note: The last instruction in the PulseProgram must be a STOP instruction, or the program will loop infinitely.
7.Stop programming the selected device. This can be accomplished by calling pb_stop_programming().
8.Select which cores are enabled by calling pb_core_select(core_mask). Each bit of the core mask corresponds
to that core being enabled (i.e. bit 0 corresponds to core 0.)
9.Trigger the selected cores by using pb_start(), or reset the board with pb_stop().
10.Close the API by calling pb_close().

For more information on using the DualCore SpinAPI, see the “SpinAPI Reference Manual.pdf” found in the
SpinAPI directory.

www.spincore.com 6 2013/08/28

http://www.spincore.com/CD/Setup/SpinAPI_MultiCore_2010-04-01.exe

PulseBlasterESR DualCore 8M

Triggering PulseProgram Execution

The PulseBlasterESR DualCore can be triggered in two ways, either by software trigger or hardware trigger.
The software trigger is initiated by sending a command from the host PC via the pb_start() function. Since the
PulseBlasterESR DualCore boards are typically used with non real-time operating systems, the exact time
between issuing a software trigger and the board acting on that trigger cannot be precisely specified. For
precision control, the pulse program can also be triggered by setting the HW_Trigger pin to a logical 0. This will
cause the pulse program to be triggered with a latency of seven clock cycles. For more information on the
hardware trigger, see Appendix B: Hardware Reset/Triggering.

Stopping PulseProgram Execution

The PulseBlasterESR DualCore can be stopped by using either the software or hardware reset. The
software reset is initiated by sending a command from the host PC via the pb_stop() function. Since the
PulseBlasterESR DualCore boards are typically used with non real-time operating systems, the exact time
between issuing a software reset and the board acting on that reset cannot be precisely specified. For precision
control, the pulse program can also be reset by setting the HW_Reset pin to a logical 0. This will cause the
pulse program stop and the program counter to reset within one clock cycle. For more information on the
hardware reset, see Appendix B: Hardware Reset/Triggering.

www.spincore.com 7 2013/08/28

PulseBlasterESR DualCore 8M

 III. Test Programs
Example Programs

 Seven test programs have been packaged with the SpinAPI driver suite to illustrate the basic features and
functionality of the PulseBlasterESR DualCore 8M design. All programs can be found at: Start → All Programs
→ SpinAPI → Examples → DualCore Examples (the default installation location is:
“C:\SpinCore\SpinAPI\Examples\DualCore Examples”).

Example 1

The first test program, pb_dualcore_example1.c demonstrates that both cores (channels) can generate
identical pulses that are precisely synchronized.

An excerpt from the code to program the cores is as follows:

PulseProgram 1: Excerpt from pb_dualcore_example1.c

In Example 1, both cores are programmed with identical content. Later in the program, both cores are
triggered at the same time using pb_start(). The resulting output should be four identical 50.0 ns pulses on
BNC0 and BNC1.

NOTE: When attaching an oscilloscope to the board to observe the pulses, care should be taken to use
cables of the same type and length for each channel, as skew can be induced due to propagation delays.
Conversely, any inherent variations in on-chip propagation delays can be compensated by appropriate variations
in cable length.

www.spincore.com 8 2013/08/28

//********* Program Core0 ******************-/
pb_start_programming (CORE0_MEM);
 pb_inst(1, 50.0 * ns);
 pb_inst(0, 50.0 * ns);
 pb_inst(1, 50.0 * ns);
 pb_inst(0, 50.0 * ns);
 pb_inst(1, 50.0 * ns);
 pb_inst(0, 50.0 * ns);
 pb_inst(1, 50.0 * ns);
 pb_inst_stop();
 instruction_count += pb_stop_programming ();

//******** Program Core1 ************************-/
 pb_start_programming (CORE1_MEM);
 pb_inst(1, 50.0 * ns);
 pb_inst(0, 50.0 * ns);
 pb_inst(1, 50.0 * ns);
 pb_inst(0, 50.0 * ns);
 pb_inst(1, 50.0 * ns);
 pb_inst(0, 50.0 * ns);
 pb_inst(1, 50.0 * ns);
 pb_inst_stop();
 instruction_count += pb_stop_programming ();

PulseBlasterESR DualCore 8M

Example 2

The second example is composed of two separate files: pb_dualcore_example2a.c and
pb_dualcore_example2b.c. Each of these examples are used to program one core with a pulse sequence (50 ns
on/50 ns off) that will occupy the entire 4M instruction memory, and one core with a single pulse that is on for the
equivalent pulse program time. This allows for verification that the core's full memory is working properly and
that there are no timing inaccuracies in any of the 4M instructions.
•pb_dualcore_example2a.c : Tests core0's entire Pulse Program memory, and uses core1 to generate the
equivalent time pulse.
•pb_dualcore_example2b.c : Tests core1's entire Pulse Program memory, and uses core0 to generate the
equivalent time pulse.

An excerpt from the code to program the cores is as follows:

PulseProgram 2: Excerpt from pb_dualcore_example2a.c

Later in the program, all both cores are triggered at the same time using pb_start().

NOTE: When attaching an oscilloscope to the board to observe the pulses, care should be taken to use
cables of the same type and length for each channel, as skew can be induced due to propagation delays.
Conversely, any inherent variations in on-chip propagation delays can be compensated by appropriate variations
in cable length.

www.spincore.com 9 2013/08/28

//********* Program Core0 ******************-/
 pb_start_programming (CORE0_MEM);
 i=0;
 while(i<FULL_MEMORY_SIZE-2) {
 pb_inst(1, 50.0*ns);
 pb_inst(0, 50.0*ns);
 i+=2;
 }
 pb_inst(1, 50.0*ns);
 pb_inst_stop();
 instruction_count_count += pb_stop_programming ();

//******** Program Core1 ******************-/
 pb_start_programming (CORE1_MEM);
 pb_inst(1, (FULL_MEMORY_SIZE*50.0)*ns);
 pb_inst_stop();
 instruction_count_count += pb_stop_programming ();

PulseBlasterESR DualCore 8M

Example 3

The third test program, pb_dualcore_example3.c, demonstrates creating Pulse Programs with an adjustable
offset between the first pulse as low as 2.00 ns. When the program is run, the user will be prompted for the
offset between the two cores. This must be a multiple of 2.00 ns.

An excerpt from the code to program the cores is as follows:

PulseProgram 3: Excerpt from pb_dualcore_example3.c

Later in the program, all both cores are triggered at the same time using pb_start(). When the board is
triggered, there should be two 50.0 ns pulses on BNC0 and BNC1, with the pulses on BNC0 starting the
specified offset after the pulses on BNC1.

Note that the offset of down to 2.00 ns is created by having an initial instruction with at least the minimum
pulse length.

NOTE: When attaching an oscilloscope to the board to observe the pulses, care should be taken to use
cables of the same type and length for each channel, as skew can be induced due to propagation delays.
Conversely, any inherent variations in on-chip propagation delays can be compensated by appropriate variations
in cable length.

www.spincore.com 10 2013/08/28

//********* Program Core0 ******************-/
 pb_start_programming (CORE0_MEM);
 pb_inst(0, 36.0*ns + offset);

pb_inst(1, 50.0*ns);
pb_inst(0, 50.0*ns);
pb_inst(1, 50.0*ns);
pb_inst_stop();

 instruction_count += pb_stop_programming ();

//********* Program Core1 ******************-/
 pb_start_programming (CORE1_MEM);
 pb_inst(0, 36.0*ns);

pb_inst(1, 50.0*ns);
pb_inst(0, 50.0*ns);
pb_inst(1, 50.0*ns);
pb_inst_stop();

 instruction_count += pb_stop_programming ();

PulseBlasterESR DualCore 8M

Example 4

The fourth test program, pb_dualcore_example4.c, demonstrates the stability of the counters in each
PulseBlaster cores by generating an increasingly long pulse, starting at the minimum pulse length and increasing
by 2.00 ns every 100 ms. This is accomplished by using a continuous loop within the C-program. To exit the
program, enter CTRL-C or close the prompt window.

An excerpt from the code to program the cores is as follows:

PulseProgram 4: Excerpt from pb_dualcore_example4.c

 As shown above, the increasingly long pulse is generated by reprogramming the board memory with a new
instruction with an increasing pulse length every loop.

NOTE: When attaching an oscilloscope to the board to observe the pulses, care should be taken to use
cables of the same type and length for each channel, as skew can be induced due to propagation delays.
Conversely, any inherent variations in on-chip propagation delays can be compensated by appropriate variations
in cable length.

www.spincore.com 11 2013/08/28

while(1) {
//******** Program Core0 ************************-/

pb_start_programming (CORE0_MEM);
pb_inst(1, (36.00 + i*2.00)*ns);
pb_inst_stop();
pb_stop_programming ();

//********* Program Core1 ******************-/
pb_start_programming (CORE1_MEM);
pb_inst(1, (36.00 + i*2.00)*ns);
pb_inst_stop();
pb_stop_programming ();

 i++;

pb_start();
Sleep(100);

}

PulseBlasterESR DualCore 8M

Example 5

The fifth test program, pb_dualcore_example5.c, explores a range of offsets between cores. The program
starts with no offset, then increases the offset by 2.00 ns every 100 ms up until a 236 ns offset. The offset then
begins decreasing by 2.00 ns every 100 ms. This is accomplished by using a continuous loop within the C-
program. To exit the program, enter CTRL-C or close the prompt window.

An excerpt from the code to program the cores is as follows:

PulseProgram 5: Excerpt from pb_dualcore_example5.c

NOTE: When attaching an oscilloscope to the board to observe the pulses, care should be taken to use
cables of the same type and length for each channel, as skew can be induced due to propagation delays.
Conversely, any inherent variations in on-chip propagation delays can be compensated by appropriate variations
in cable length.

Example 6

The sixth example, pb_dualcore_mem_test.c, is a memory verification tool. This program is used primarily to
test the memory read/write speeds and verify that the memory is working properly. When the program is run, it
will write a random patterns to each memory address, and then read back the result, verifying that the memory is
working properly and displaying the read and write speeds that were obtained.

If a large number of errors are occurring, it could mean that the memory is malfunctioning. Please note that if
the PulseBlaster Cores are running, the PCI bus will not have access to the internal memory, and the memory
tests will fail.

www.spincore.com 12 2013/08/28

while(1) {
//******** Program Core0 ************************-/

pb_start_programming (CORE0_MEM);
pb_inst(0, (36.00 + i*2.00)*ns);
pb_inst(1, 50*ns);
pb_inst_stop();
pb_stop_programming ();

//********* Program Core1 ******************-/
pb_start_programming (CORE1_MEM);
pb_inst(0, 36.00*ns);
pb_inst(1, 50*ns);
pb_inst_stop();
pb_stop_programming ();

 i+= dir;

 if(i==100) {
 dir = -1;
 }
 else if(i==0) {
 dir = 1;
 }

pb_start();

Sleep(25);
pb_stop();

}

PulseBlasterESR DualCore 8M

 IV. Appendices

Appendix A: Connectors

Note: For the PulseBlasterESR DualCore 8M design, only flags 0 and flags 1 are used (BNC0 and BNC1
respectively.)

The shrouded IDC connectors labeled Flag 12..23and Flag 24.. 35 can also be accessed using an
SP32 board (Figure 1) which allows the use of MMCX cables. This enables the individual bits of the PulseBlaster
to be more easily accessed. Pin 1 on the MMCX adapter board can identified with a square pin.

HW_TRIG/RESET Header

www.spincore.com 13 2013/08/28

Diagram 2: PulseBlaster DualCore Connector Layout

BNC3

BNC2

BNC1

BNC0

FLAG7_OUTFLAG6_OUTFLAG5_OUTFLAG4_OUT

EEPROM_CONFIG

STRATIX_CONFIG

HW_TRIG/RESET

Flags24...35 OutFlags12...23 Out

BNC0

Diagram 3: HW_TRIG/RESET Header

11

2

3

4

5

6

7

8

9

10

CLOCK

FPGA

PulseBlasterESR DualCore 8M

Pin Number Function

1 GND

2 INT0

3 GND

4 INT1

5 GND

6 INT2

7 GND

8 HW_Reset

9 GND

10 HW_Trigger

Table 2: HW_TRIG/RESET Header Pin-out

CLOCK Header

Pin Number Function

1 No Connect

2 VCC(3.3V)

3 No Connect

4 VCC(3.3V)

5 GND

6 CLOCK_INPUT

Table 3: CLOCK Header Pin-out

Appendix B: Hardware Triggering/Reset

In order to provide precise and predictable triggering and reset latencies, the PulseBlasterESR DualCore
provides an external hardware reset and hardware trigger inputs. These inputs can be found on the
HW_TRIG/RESET header.

www.spincore.com 14 2013/08/28

Diagram 4: CLOCK Header

1

2

3

4

5

6

PulseBlasterESR DualCore 8M

 The hardware trigger (HW_Trigger) and reset pins (HW_Reset) are pulled internally to a logical high level via
a 10kΩ resistor. In order for a hardware trigger or reset to be detected, the appropriate pin must be driven low
via an external source for at least one clock period (2.0 ns). Once a hardware trigger has been detected, the
enabled PulseBlaster Cores will start executing after seven clock cycles (14.0 ns). A hardware reset has a
latency of one clock cycle. Maximum jitter for both external hardware signals is one clock cycle (2.0 ns).

In cases where it is necessary to have precise control of the triggering and reset timings, an external
triggering source such as a PulseBlaster24 should be used.

Appendix C: Synchronization of Multiple Boards

In cases where it is necessary to achieve synchronization between multiple boards, it is possible to combine
the use of the hardware trigger and reset mechanisms along with a single clock source. Diagram 5 below shows
an example setup for achieving multiple board synchronization.

In order to ensure accurate synchronization of cores between boards, it is necessary that the boards be
driven from the same clock source. The CLOCK header diagram in Appendix A shows the pin-out for the clock
header for providing the clock signal to the boards.

Once the boards are being driven from a single clock source, an external trigger source (such as a
PulseBlaster24) should be used to trigger the boards with precise timing. A single flag from the PulseBlaster24
can be used to drive all of the Hardware Triggers low in order to trigger the boards. In order to avoid multiple
triggers being detected, the trigger pulse cannot be longer than the Pulse Program.

Each board can be can then be programmed from the host PC, and then triggered by sending a software
trigger to the Trigger Source.

www.spincore.com 15 2013/08/28

Diagram 5: Example setup for achieving multiple board synchronization

Trigger Source
(i.e. PulseBlaster24)

Multiple PulseBlasterESR DualCore Turbo

50 MHz Clock
Source

Flag Output
Software Trigger
(from host PC)

Clock In Clock In

Clock In

Clock In

Flag Outputs

Flag Outputs

Flag Outputs

HW_Trigger

HW_Trigger

HW_Trigger

PulseBlasterESR DualCore 8M

V. Related Products and Accessories

1. OCXO – Oven Controlled Oscillator. Figure 1 – This oscillator is available in a frequency of 50 MHz.
For ordering information contact SpinCore at http://www.spincore.com/contact.shtml.

www.spincore.com 16 2013/08/28

Figure 1: OCXO Oven Controlled Oscillator

http://www.spincore.com/contact.shtml

PulseBlasterESR DualCore 8M

VI. Contact Information

SpinCore Technologies, Inc.

4631 NW 53rd Avenue, Suite 103
Gainesville, Florida 32653, USA

Phone: +1-352-271-7383
Fax: +1-352-371-8679

Website: http://www.spincore.com

www.spincore.com 17 2013/08/28

http://www.spincore.com/

PulseBlasterESR DualCore 8M

 VII. Document Information

Document Title: PulseBlasterESR DualCore 8M

Document Number: DA-76

File Name: PBESR_DualCore_Manual

Revision History: Revision History Available at SpinCore

www.spincore.com 18 2013/08/28

	I. Introduction
	Product Overview
	Programming Paradigm
	Specifications

	II. Installing and Using Your PulseBlasterESR DualCore
	Installation
	General API Programming Information
	Triggering PulseProgram Execution
	Stopping PulseProgram Execution

	III. Test Programs
	Example Programs
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	IV. Appendices
	Appendix A: Connectors
	HW_TRIG/RESET Header
	CLOCK Header

	Appendix B: Hardware Triggering/Reset
	The hardware trigger (HW_Trigger) and reset pins (HW_Reset) are pulled internally to a logical high level via a 10kΩ resistor. In order for a hardware trigger or reset to be detected, the appropriate pin must be driven low via an external source for at least one clock period (2.0 ns). Once a hardware trigger has been detected, the enabled PulseBlaster Cores will start executing after seven clock cycles (14.0 ns). A hardware reset has a latency of one clock cycle. Maximum jitter for both external hardware signals is one clock cycle (2.0 ns).

	Appendix C: Synchronization of Multiple Boards

	V. Related Products and Accessories
	VI. Contact Information
	VII. Document Information

