
Owner’s Manual for the

PulseBlasterPlus!™
Complete Digital Excitation System:

Direct Digital Synthesis (DDS) and TTL

Models:
PBP-DDS-100-USB PBP-DDS-100-RS232
PBP-DDS-50-USB PBP-DDS-50-RS232

SpinCore Technologies, Inc.
3525 NW 67th Avenue

Gainesville, Florida 32653, USA
Phone: (352)-271-7383

http://www.spincore.com

www.spincore.com

PulseBlasterPlus!

Congratulations and THANK YOU for choosing a design from SpinCore
Technologies, Inc. We appreciate your business. At SpinCore we try to fully
support the needs of our customers, so if you ever need assistance please contact
us and we will strive to provide the necessary help.

© 2000-2002 SpinCore Technologies, Inc. All rights reserved. SpinCore
Technologies, Inc. reserves the right to make changes to the product(s) or
information herein without notice. PulseBlasterDDS™, PulseBlaster™,
PulseBlasterPlus!, SpinCore, and the SpinCore Technologies, Inc. logo are
trademarks of SpinCore Technologies, Inc. All other trademarks are the property
of their respective owners.

SpinCore Technologies, Inc. makes every effort to verify the correct operation
of the equipment. This equipment should NOT, however, be used in system where
the failure of a SpinCore device will cause serious damage to other equipment
or harm to a person.

8/9/20072

www.spincore.com

PulseBlasterPlus!

Contents

Section I: Introduction
1 Quick Product Overview
2 System Architecture

Section II: Installation Guide

Section III: Physical Description
1 Connector Information
2 Output Bit Assignments for high density 15 pin connector
3 Additional Output Signals

Section IV: Programming Information
1 Using C Functions
2 Ordered Direct Outputs

Appendix I: Sample C program

Appendix II: Available Custom Options

3
4

7

8
9
10

11
15

22

24

8/9/20073

www.spincore.com

PulseBlasterPlus!

1. Quick Product Overview

The PulseBlasterPlus! series of Intelligent Pattern and Waveform Generation
systems from SpinCore Technologies, Inc., couples SpinCore’s unique Intelligent
Pattern Generation processor core, dubbed PulseBlaster, with Direct Digital
Synthesis (DDS) for use in system control and waveform generation.

The PulseBlaster’s state-of-the-art timing processor core, implemented in
programmable logic, provides all the necessary timing control signals required
for overall system control and waveform synchronization. By adding DDS and
arbitrary waveform generation features, PulseBlasterPlus can provide not only
digital (TTL) but also analog output signals, meeting high-performance and
high-precision complex excitation/stimuli needs of demanding users.

PulseBlasterPlus! provides users the ability to control their systems
through the generation of fully synchronized (digital and analog) excitation
waveforms from a stand alone system, providing users a compelling
price/performance proposition unmatched by any other device on the market
today. Figure 1 presents sample capabilities of the system.

8/9/20074

Section I: Introduction

Figure 1. Sample PulseBlasterPlus output capabilities

www.spincore.com

PulseBlasterPlus!

2. System Architecture

Block diagram

 Figure 2 presents the general architecture of the PulseBlasterPlus system.
The DDS, Pulse Timing and Gating cores have been integrated into a single stand
alone box. The internal DDS core has 16 programmable 32 bit frequency
registers that are under the pulse program control. Prior to gating, the
internal DDS signal can be phase offset by one of 16 programmable 12 bit phase
registers on each output. The RF outputs are available on either BNC or SMA
connectors. The host interface can be either RS-232 or USB.

Fig. 2. PulseBlasterPlus system architecture.

8/9/20075

DAC
RF
Outputs

Phase0-15 Gate

DAC
GatePhase0-15Freq0-15

Reference Clock
Oscillator

Precision Pulse Timing Processor Output and Control Register

TTL
Outputs

SRAM
Host Programming Interface

User Control

PulseBlasterPlus!™

© 2002 SpinCore Technologies, Inc.

http://www.spincore.com

Numerically
Controlled
Oscillator

DDS Core

PP Core

www.spincore.com

PulseBlasterPlus!
Output signals

This product comes with up to two analog output channels that can be
configured to output radio-frequency (RF/IF) waveforms, arbitrary waveforms, or
a combination of both, and up to 10 digital output signal lines. The frequency
and phase of the RF waveforms generated by the DDS output channels are under
the complete control of the user and are specified through software
programming.

PulseBlasterPlus! also provides the ability to gate the output of the DDS
channels allowing for independent pulsed RF operation of all output channels.
With digital sampling rate of 100 MHz (max. clock frequency), analog signals up
to approx. 50 MHz can be generated. Both analog output signals are available on
external BNC connectors. The output impedance of the analog signals is 50
ohms.

The individually controlled digital (TTL/CMOS) output bits are capable of
delivering +-25 mA per bit. For non-rf models, twenty-four of the output lines
can be set to either the 5 V or 3.3V I/O TTL logic standard. For DDS models,
up to 10 digital TTL output lines are available on the 15-pin connector.

Timing characteristics

PulseBlasterPlus’s timing controller uses an internal (on-board) crystal
oscillator of up to 100 MHz. The innovative architecture of the timing
controller allows the processing of either simple timing instructions (delays
of up to 4,294,967,296 clock cycles), or double-length timing instructions (up
to 2^52 clock cycles long - nearly 2 years with a 100 MHz clock!). Regardless
of the type of timing instruction, the timing resolution remains constant for
any delay – just one clock period (e.g., 10 ns for a 100 MHz clock, or 100 ns
for a 10 MHz clock).

The core timing controller has a very short minimum delay cycle – only five
clock periods for internal memory (512 words) models. This translates to a 50
ns pulse/delay/update with a 100 MHz clock. The external memory models (up to
32k words) have a nine-clock period minimum instruction cycle.

Instruction set

 PulseBlasterPlus!’s design features a set of commands for highly flexible
program flow control. The micro-programmed controller allows for programs to
include branches, subroutines, and loops at up to 8 nested levels – all this to
assist the user in creating dense pulse programs that cycle through repetitious
events, especially useful in numerous multidimensional spectroscopy and imaging
applications.

External triggering

 PulseBlasterPlus! can be triggered and/or reset externally via dedicated
hardware lines. The two separate lines combine the convenience of triggering
(e.g., in cardiac gating) with the safety of the "stop/reset" line. The
required control signals are “active low” (or short to ground) and are
connected to internal pull-up resistors.

8/9/20076

www.spincore.com

PulseBlasterPlus!
Summary

 PulseBlasterPlus! is a versatile, high-performance pulse/pattern TTL and
RF/IF/AWG generator operating at speeds of up to 100 MHz and capable of
generating pulses/delays/intervals ranging from 50 ns to over 2 years per
instruction. It can accommodate pulse programs with highly flexible control
commands of up to 32k program words. Its high-current output logic bits are
independently controlled and some bits are 5/3.3 V user-selectable. Two analog
channels (50 ohm impedance) are available from a single system.

Summary Specifications

DDS Section (Model DDS-100):
• 100 MHz reference clock oscillator (other frequencies upon request)
• 0.047 Hz frequency resolution (32 bits)
• 16 loadable frequency registers for agile frequency modulation/selection (32 bits each)
• 16 loadable phase-offset registers for agile phase modulation/selection (12 bits each)
• 0.09 degree phase resolution (12 bits)
• 40 ns phase/frequency switching latency
• 5 MHz max. modulating frequency
• 12 dBm rf output power
• 50 ohm output impedance
• BNC connectors

TTL Section:

• 10 individually controlled digital output lines (TTL levels)
• variable pulses/delays for every TTL line
• 25 mA output current per TTL line
• output lines can be combined to increase the max. output current

Common Parameters (DDS and TTL Sections):
• 90 ns shortest pulse/interval (50 ns for non-rf models at 100 MHz clock frequency)
• 2 years longest pulse/interval
• 10 ns pulse/interval resolution
• rf and TTL pulses are synchronized
• 32k max. memory space
• external triggering and reset – TTL levels

Pulse Program Control Flow (Common):
• loops, nested 8 levels deep
• 20 bit loop counters (max. 1,048,576 repetitions)
• subroutines, nested 8 levels deep
• wait for trigger - 80 ns latency
• 5 MHz max. retriggering frequency

8/9/20077

www.spincore.com

PulseBlasterPlus!

1. Go to http://www.spincore.com/CD/PulseBlasterPlus/v1/Drivers/ and download
PBPlus_Drivers.zip.

2. Unzip the files to their own directory.

3. Power on the PulseBlasterPlus! and connect it to the host computer with a
USB cable (provided).

4. When the USB device is first connected to the host, a dialog box will appear
that says “New Hardware Found.” Click “Next”

5. Place a check by the box that says “Specify Location” and uncheck all
others. Click “Next”

6. A window will pop up asking for the driver directory. Click “Browse”

7. Browse to the newly created folder containing the drivers. There will be 3
subdirectories – win-98-me, win-2k, and win-xp. Select the appropriate
directory.

8. The next dialog box should say that an appropriate driver was found –
“SpinCore Technologies, Inc. using ARS Technologies USB to ISA device.”

9. Click “Next” and “Finish” until installation is complete.

10.To test if the drivers are working properly, go to
http://www.spincore.com/CD/PulseBlasterPlus/v1/DDS_Examples/ and download
the following files:

Example1_DDS.exe, Example2_DDS.exe, pb01us02.dll
*pb01us02.dll must be in the same working directory as the executable files.

11.Run Example1_DDS.exe. All digital output pins on the PulseBlasterPlus!
should toggle on and off at about 1 second intervals. Both analog output
signals should be generating a 0.1 MHz sine wave, with the two signals being
90 degrees out of phase.

12.Run Example2_DDS.exe. All output pins should pulse on for 2us, off for 2us,
on for 2us, then off for 14us. The digital outputs should alternate being
on and off, while outputting a 1 MHz sine wave.

8/9/20078

Section II: Installation Guide

http://www.spincore.com/CD/PulseBlasterPlus/v1/DDS_Examples/
http://www.spincore.com/CD/PulseBlasterPlus/v1/Drivers/

www.spincore.com

PulseBlasterPlus!

1. Connector Information

All input-output connectors have been mounted at the back of the
PulseBlasterPlus! enclosure. Figure 2 presents a sketch of the available
connectors.

Figure 3 – Back view of PulseBlasterPlus!™

• Rx (BNC) – Analog output with 50 ohm impedance
• 15 pin connector – A high density 15 pin connector for TTL Output signals
• Tx (BNC) – Analog output with 50 ohm impedance
• Serial (DB9) – RS232 connection to host computer (unused when a USB model is

specified)
• USB – USB connection to host computer (unused when an RS-232 model is

specified)
• Reset – TTL input signal to stop output
• Trigger – TTL input signal to start output

8/9/20079

Serial
(DB9)Power

Reset

Trigger

USB

15 pin
connector

Section III: Physical Description

Rx Tx

www.spincore.com

PulseBlasterPlus!

2. Output Bit Assignments for high density 15 pin
connector

Pin Assignments
Pin# Bit#

1 0
2 2
3 4
4 6
5 8
6 GND
7 GND
8 GND
9 GND

10 GND
11 1
12 3
13 5
14 7
15 9

Table 1: Connector Pin Assignments

8/9/20071

www.spincore.com

PulseBlasterPlus!

3. Additional Output Signals

The following signals are available internally, and can be routed
externally upon request:

Output Clock - It is the clock signal used to latch patterns in the output
buffers. This clock has been configured to have a relatively slow slew
rate so as to avoid noise problems on a transmission line. This clock is
not a 50% duty cycle clock. The width of the high part of the signal is
one system clock period. For a 100 MHz system, the signal is at a logical
one for 10 ns at every transition to a new pulse program line.

System Reset – Used to indicate (when low) to the external world that the
uPC controller is in a reset state. It can be used in larger systems to
monitor the state of the PulseBlasterPlus!™ design.

Running - Similar to System Reset is the Running signal. It is driven
high when the uPC is executing code. It is taken low when the uPC has
entered either a reset of idle state.

Stopped - Stopped is asserted when the uPC has encountered the stop
command while normally executing code. This signal informs the external
world that the uPC has successfully executed its program and has halted
operation.

8/9/20071

www.spincore.com

PulseBlasterPlus!

1. Provided DLL Functions
The provided driver DLL, pb01us02.dll, provides a function necessary for

programming the PulseBlasterDDS.

int pbp_outp(unsigned short address, int data);
This function sends 8 bits of data over the USB, at a specified address
offset. Only the lowest 8 bits of are valid.

2. Using C Functions
A series of functions have been written to make writing pulse programs

easier. These functions use the provided DLL functions. In order to use these
functions, the DLL (pb01us02.dll), the library file (pb01us02.lib), the header
files (pb01us02.h and pbdfuncs.h), and source file (pbdfuncs.c) must be in the
working directory of your C compiler. You can obtain these files from
http://www.spincore.com/CD/PulseBlasterPlus/v1/DDS_Examples/Example1_DDS_Source
.zip

void set_clock(double clock_freq);
Used to set the clock frequency of the system. The variable
clock_frequency is specified in MHz. The default value is 50MHz. You
only need to call this function if you are not using a –50 system.

void start_programming(int device);
Used to initialize the system to receive programming information. It
accepts a parameter to know which registers are being programmed. Valid
values for device are PULSE_PROGRAM, FREQ_REGS, and PHASE_REGS.

void set_freq(double freq);
Used to set the values in the frequency registers. Can only be called
after start_programming(FREQ_REGS) has been called. Registers are
programmed one at a time, starting at 0 and incrementing each time this
function is called. It accepts the value for the frequency register in
MHz

void set_phase(double phase);
Used to set the values in the phase registers. Can only be called after
start_programming(PHASE_REGS) has been called. Registers are programmed
one at a time, starting at 0 and incrementing each time this function is
called. It accepts the value for the phase register in degrees.

8/9/20071

Section IV: Programming Information

www.spincore.com

PulseBlasterPlus!

int pb_inst(int freq, int phase, int RF_Output_Enable, int flags,
int inst, int inst_data, int length);

Used to send one instruction of the pulse program. Can only be called
after start_programming(PULSE_PROGRAM) has been called. It returns –1 on
an error, or the instruction number upon success. Instructions are
numbered starting at 0.

int freq – Number of the frequency register to be used. Valid range
is from 0 to 16.

int phase – Number of the phase register to be used. Valid range is
from 0 to 16.

int RF_Output_Enable – Determines whether analog output is generating
a sinusoid or is at ground. Valid values are ANALOG_ON and ANALOG_OFF
int flags – determines state of each TTL output bit. Valid values are
0x0 to 0x3FF. For example, 0x010 would correspond to bit 7 being on,
and all other bits being off.

int inst – determines which type of instruction is to be executed.
Valid instructions are included in table 2.

int inst_data – data to be used with the previous inst field. The
meaning of this is described in table 2.

int length – duration of this pulse program instruction, specified in
ns.

void stop_programming();
Used to tell that programming the system is complete. Program execution
cannot start until this command is received.

void start_pb();
Once system has been programmed, this instruction will start execution of
pulse program.

void stop_pb();
Stops output of system. Analog output will return to ground, and TTL
outputs will remain in the state they were in when stop command was
received.

8/9/20071

www.spincore.com

PulseBlasterPlus!

Example use of C functions

The following example is a complete pulse program that can be executed on
the PulseBlasterPlus! systems. The program, upon executing, will load and
start generating a sequence of 10 us RF pulses on Tx channel every 1 ms.
The Rx channel will be turned ON during the 1 ms gap between the Tx pulses
and OFF during the Tx pulse. The phase of the Rx signal will be phase
shifted by 180 degrees with respect to the Rx phase. The generated rf
frequencies will be 1.012 MHz. While executing, the TTL outputs will toggle
between the logical “one” during the 10 us intervals and logical “zero”
during the 1 ms intervals.

//Sample Program for PulseBlasterPlus!

#include "pbdfuncs.h"
#include “pbdfuncs.cpp”

int main()
{

int start;
set_clock(100); // 100 MHz reference clock frequency

start_programming(FREQ_REGS);
set_freq(1.012); // 1.012 MHz in 0th frequency register

start_programming(TX_PHASE_REGS);
set_phase(0); // Tx phase value set to 0 degrees (in 0th phase register)

start_programming(RX_PHASE_REGS);
set_phase(180); // Rx set to 180 degrees out of phase

start_programming(PULSE_PROGRAM);

// Instruction 0 - Continue to next instruction in 10.0 us
start = pb_inst(0,0,TX_ANALOG_ON,1,RX_ANALOG_ON,0x3FF,CONTINUE,0,10.0*us);

// Instruction 1 - Branch to "start" (Instruction 0) in 1 ms
pb_inst(0,0,TX_ANALOG_OFF,1,RX_ANALOG_ON,0x0,BRANCH,start,1*ms);

stop_programming();

start_pb(); //the pulse program will start

return 0;
}

A more complex pulse program example is provided in Appendix I.

8/9/20071

www.spincore.com

PulseBlasterPlus!
inst inst_data Meaning
CONTINUE Ignored Program execution continues

to next instruction
STOP Ignored Stop execution of program

(*Note all TTL values remain
from previous instruction,
and analog outputs turn off)

LOOP Number of desired loops.
This value must be greater
than or equal to 1.

Specify beginning of a loop.
Execution continues to next
instruction. Data used to
specify number of loops

END_LOOP Address of beginning of loop Specify end of a loop.
Execution returns to begging
of loop and decrements loop
counter.

JSR Address of first subroutine
instruction

Program execution jumps to
beginning of a subroutine

RTS Ignored Program execution returns to
instruction after JSR was
called

BRANCH Address of next instruction Program execution continues
at specified instruction

LONG_DELAY Number of desired loops.
This value must be greater
than or equal to 2.

For long interval
instructions. Data field
specifies a multiplier of the
delay field. Execution
continues to next instruction

WAIT Ignored Program execution stops and
waits for software or
hardware trigger. Execution
continues to next instruction
after receipt of trigger.

Table 2: Instruction Types and meaning of associated data.

8/9/20071

www.spincore.com

PulseBlasterPlus!
3. Using Direct Outputs
If you do not wish to use the provided C functions, you can take advantage

of the pbp_outp() function alone. An explanation of using this function to
program the system is included below.

Initialization of the PulseBlasterPlus!™ for operation involves a minimum of
four steps. The steps are as follows:

1) Send LOAD NUMBER OF BYTES PER WORD instruction.
2) Send SELECT PERIPHERAL DEVICE instruction.
3) Send CLEAR ADDRESS COUNTER instruction.
4) Loading data to memory.*
5) Send PROGRAMMING FINISHED instruction.

* Once the system has been programmed, this step is optional. If you are just
restarting the pulse program after a STOP command or an HARDWARE_RESET has
stopped the program, you can skip this step during re-initialization.

If these five commands are not sent from a PC, the PulseBlasterPlus!™ will
not run as desired. All five instructions are required as an attempt to ensure
that the device has been programmed before it can be armed. The first time the
system is used, the loading of the memory with data has to be performed. Upon
reset, four instructions must be executed to restart the device again.

WE for Peripherals: This register is used to select the peripheral that is
to be programmed. The value of this register that is used to select program
memory is always zero and this is the default value for the register. A
complete listing of the values and the associated hardware that can be
programmed when appropriately set. By selecting 0xFF for this value, no device
is selected and the initial value of the output flags may be set. (*Note that
the clock signal to the FF must still be transitioned, which may be
accomplished by writing to the base output port + 5 twice in succession.)

WE Register Value (hex)
Program Memory 0
Program Frequency Registers 1
Program Phase Registers 2
Change Flags Only FF

Table 3: Peripheral List
CLEAR ADDRESS COUNTER: The Address Counter is used to manufacture the memory

address. The Address Counter is not loadable; it can only be cleared and
started at zero. It is not possible to load a particular section of memory.
All loads must start from either the beginning of memory, or wherever the
Address Counter left off.

Flag Initialization Strobe: The output flags of the PulseBlasterPlus! can
be programmed while the device is in a reset state. This is useful to
initialize flags after powering-up and to reset flags to a known state if a
program must be aborted. Writing to the Flag Initialization Strobe register
will toggle the line used to clock data into the output latches. Appendix I
provides more information on how to use the Flag Initialization Strobe to
program the output flags while the PulseBlasterPlus! is in a reset state.

LOAD_MEMORY: This instruction is used to specify data that should be used to
program the memory used by the device. Since the ISA data is taken only one

8/9/20071

www.spincore.com

PulseBlasterPlus!
byte at a time, the IBC must reconstruct the data word to be programmed. The
data word is reconstructed in the IBC most significant byte first.

PROGRAMMING FINISHED: This instruction enables the pattern generator of the
PulseBlasterPlus!™. This instruction prevents the pattern generator from
accepting a hardware trigger or software start command before the device has
been programmed. Once the design has been programmed, the PROGRAMMING
FINISIHED command must be sent to arm the device for operation. After the
pattern generator has been armed, any hardware trigger or software start
command will cause the system to start operation. The PulseBlasterPlus!™ can be
reset by issuing the DEVICE_RESET command. This will internally clear the
PROGRAMMING FINISHED instruction and prevent the pattern generator from
operating again until the IBC has been re-initialized.

In order to select each of the commands mentioned about, you write to the port
base + offset. A table of each offset’s meaning is included below.

Offset Command Meaning
0 DEVICE_RESET Stops Pulse Program
1 DEVICE_START Starts Pulse Program (only when in

initialized state)
2 SELECT_BPW Selects number of BPW (10 for instructions)
3 SELECT_DEVICE Using Table 2, selects internal device to

be programmed
4 CLEAR_ADDRESS_COUNTER Resets internal memory address counter
5 FLAG_STROBE Strobes output clock signal to preset

digital outputs
6 DATA_TRANSFER Data to be written to internal device
7 PROGRAMMING_FINISHED Sets device in initialized state

Table 4: Port Offset Meaning

Calculating DDS Frequency

DDS frequency word (32 bits) = Desired Freq (in MHz) * 2^32

 Clock Freq (in MHz)

The calculated value above can be used when programming the DDS units.
 The frequency resolution of the default design is:

50e6 / 2^32 = 0.012 Hz

Calculating DDS Phase

DDS phase word (32 bits) = Desired Phase (in degrees) * 2^32

 360 degrees
The calculated value above can be used when programming the DDS units.
Only the top 12 bits are used. This makes the phase resolution of the default
design is:
360 / 2^12 ≈ 0.09 degrees

Example Output:
The following is an example of the output sequence to program the
PulseBlasterPlus!. You must use the pbp_outp(addr, data) function from the
provided DLL in order to use this method.

8/9/20071

www.spincore.com

PulseBlasterPlus!
The following is an example of the output sequence to program the
PulseBlasterPlus!. Explanations are included in brackets in the middle of the
code.

// Initialization:

pbp_outp(0,0); //(Issue device reset)
pbp_outp(2,4); //(Select number of bytes per word)
pbp_outp(3,0xFF); //(Select device to program (Flag initial values))
pbp_outp(4,0); //(Reset address counter)

// Set initial flag values
// Values for this example are "0x000000f0"

pbp_outp(6,0); //(Data transfer)
pbp_outp(6,0); //(Data transfer)
pbp_outp(6,0); //(Data transfer)
pbp_outp(6,0xF0); //(Data transfer)

pbp_outp(5,0); //(Clock data into external buffer)
pbp_outp(5,0); //(Return clock signal to low)

// Set up DDS frequency registers

pbp_outp(0,0); //(Issue device reset)
pbp_outp(2,4); //(Select number of bytes per word)
pbp_outp(3,1); //(Select device to program (DDS Frequency Registers))
pbp_outp(4,0); //(Reset address counter)

/*
DDS Register Values
Reg0 = 051EB852 (1 MHz)
Reg1 = 0A3D70A4 (2 MHz)
.
.
Reg15 = 147AE148 (4 MHz)

Formula for finding these values:

REG0 = DESIRED_FREQUENCY * 232 / PBDDS_CLOCK
= 1 MHz * 232 / 50 MHz = 858993459.2 = 0x051EB852

*/

pbp_outp(6,0x05); //(Data Transfer - Byte 3 of Reg0)
pbp_outp(6,0x1E); //(Data Transfer - Byte 2 of Reg0)
pbp_outp(6,0xB8); //(Data Transfer - Byte 1 of Reg0)
pbp_outp(6,0x52); //(Data Transfer - Byte 0 of Reg0)

pbp_outp(6,0x05); //(Data Transfer - Byte 3 of Reg1)
pbp_outp(6,0x3D); //(Data Transfer – Byte 2 of Reg1)
pbp_outp(6,0x70); //(Data Transfer - Byte 1 of Reg1)
pbp_outp(6,0xA4); //(Data Transfer - Byte 0 of Reg1)

.

.

pbp_outp(6,0x14); //(Data Transfer - Byte 3 of Reg15)
pbp_outp(6,0x7A); //(Data Transfer - Byte 2 of Reg15)
pbp_outp(6,0xE1); //(Data Transfer - Byte 1 of Reg15)

8/9/20071

www.spincore.com

PulseBlasterPlus!
pbp_outp(6,0x48); //(Data Transfer - Byte 0 of Reg15)

// Set up phase registers

pbp_outp(0x0); //(Issue device reset)
pbp_outp(2,4); //(Select number of bytes per word)
pbp_outp(3,2); //(Select device to program (TX Phase Registers))
pbp_outp(4,0); //(Reset address counter)

/*
Phase Register Values
Reg0 = 093E93E9 (13 degrees)
Reg1 = 40000000 (90 degrees)
.
.
Reg15 = E0000000(315 degrees)

Formula for finding these values:

REG0 = DESIRED_PHASE * 232 / 360
= 13 * 232 / 360 = 155096041.24 ≈ 0x093E93E9

* Note that only the top 3 hex digits (0x093) are actually used in
programming the phase register. The other digits must still be sent so that
the dds word remains 32 bits long.

*/

pbp_outp(6,0x09); //(Data Transfer - Byte 3 of Reg0)
pbp_outp(6,0x3E); //(Data Transfer - Byte 2 of Reg0)
pbp_outp(6,0x93); //(Data Transfer - Byte 1 of Reg0)
pbp_outp(6,0xE9); //(Data Transfer - Byte 0 of Reg0)

pbp_outp(6,0x40); //(Data Transfer - Byte 3 of Reg1)
pbp_outp(6,0x00); //(Data Transfer - Byte 2 of Reg1)
pbp_outp(6,0x00); //(Data Transfer - Byte 1 of Reg1)
pbp_outp(6,0x00); //(Data Transfer - Byte 0 of Reg1)

.

.

pbp_outp(6,0xE0); //(Data Transfer - Byte 3 of Reg15)
pbp_outp(6,0x00); //(Data Transfer - Byte 2 of Reg15)
pbp_outp(6,0x00); //(Data Transfer - Byte 1 of Reg15)
pbp_outp(6,0x00); //(Data Transfer - Byte 0 of Reg15)

// Pulse Program Setup

pbp_outp(0,0); //(Issue Device Reset)
pbp_outp(2,10); //(Select number of bytes per word)
pbp_outp(3,0); //(Select device to program (RAM))
pbp_outp(4,0); //(Reset address counter)

//Send pulse program
pbp_outp(6,0x18); //(Byte 9 of first instruction)
pbp_outp(6,0xFF); //(Byte 8 of first instruction)
pbp_outp(6,0xFF); //(Byte 7 of first instruction)
pbp_outp(6,0x00); //(Byte 6 of first instruction)
pbp_outp(6,0x00); //(Byte 5 of first instruction)

8/9/20071

www.spincore.com

PulseBlasterPlus!
pbp_outp(6,0x00); //(Byte 4 of first instruction)
pbp_outp(6,0x00); //(Byte 3 of first instruction)
pbp_outp(6,0x00); //(Byte 2 of first instruction)
pbp_outp(6,0x00); //(Byte 1 of first instruction)
pbp_outp(6,0x07); //(Byte 0 of first instruction)

pbp_outp(6,0xXX); //(Byte 9 of second instruction)

/*
Continue this process for all instructions. The
explanation of how to create the 80 bit instruction
words is included below. When finished with all
instructions, continue with the sequence below.

*/

pbp_outp(7,0); //(Programming Finished)

/*
Only execute the following command when you are ready
for the program to start running.

*/

pbp_outp(1,0); //(Start pulse program)

8/9/20072

www.spincore.com

PulseBlasterPlus!
Breakdown of 80 bit instruction word
Instruction Bits 79...0 are broken up into 4 sections

2. Output Pattern - 24 bits (Instruction Bits 79..56)
3. Data Field - 20 bits (Instruction Bits 55..36)
4. OP Code - 4 bits -(Instruction Bits 35..32)
5. Delay Count - 32 bits - (Instruction Bits 31..0)

Output Pattern (Bits 79 – 56):

Instruction
Bit #

Function

79 Selects one of 16 Frequency Registers (bit 3)
78 Selects one of 16 Frequency Registers (bit 2)
77 Selects one of 16 Frequency Registers (bit 1)
76 Selects one of 16 Frequency Registers (bit 0)
75 Selects one of 16 TX Phase Registers (bit 3)
74 Selects one of 16 TX Phase Registers (bit 2)
73 Selects one of 16 TX Phase Registers (bit 1)
72 Selects one of 16 TX Phase Registers (bit 0)
71 Selects one of 16 RX Phase Registers (bit 3)
70 Selects one of 16 RX Phase Registers (bit 2)
69 Selects one of 16 RX Phase Registers (bit 1)
68 Selects one of 16 RX Phase Registers (bit 0)
67 Enables output of TX signal (0 = on, 1 = off)
66 Enables output of RX signal (0 = on, 1 = off)
65 Output Connector pin 15
64 Output Connector pin 5
63 Output Connector pin 14
62 Output Connector pin 4
61 Output Connector pin 13
60 Output Connector pin 3
59 Output Connector pin 12
58 Output Connector pin 2
57 Output Connector pin 11
56 Output Connector pin 1

Table 5: Output Pattern Bit Definitions

Bits 79-76 select the frequency register used by the output signals. Bits
75..72 select the phase offset register used by the TX output. Bits 71..68
select the phase offset register used by the RX output.

8/9/20072

www.spincore.com

PulseBlasterPlus!
Data Field (Bits 55 – 36) and Op Code (Bits 35 – 32):
The data field's function is dependent on the OpCode.

OpCode # OpCode Meaning Data Field used for
0 Continue Ignored
1 Stop Ignored
2 Loop Number of desired Loops - 1
3 End Loop Address of Instruction originating loop
4 Jump to Subroutine Address of first subroutine instruction
5 Return From Subroutine Ignored
6 Branch Address of next instruction
7 Long Delay Number of desired loops - 2
8 Wait Ignored

Table 6: Opcode definitions
Delay Count (Bits 31 – 0):
How long the current instruction should be executed. The smallest possible
delay is 6 clock cycles (120ns). The formula for determining its value is
below (Assumed with a 50MHz clock)

DELAY_VALUE = (Desired Delay (ns) – 60 ns) / 20 ns

Ex. for delay of 1000 ns

= (1000ns – 60ns) / 20ns = 940ns / 20ns
= 47

= 0x2F

8/9/20072

www.spincore.com

PulseBlasterPlus!

// SpinCore Technologies, Inc.
// August 2002
// http://www.spincore.com

#include "pbdfuncs.h"
#include “pbdfuncs.cpp”

int main()
{

// Check for proper initialization of PulseBlasterDDS
if (InitPMster()!=0)
{

printf("Error initializing\n");
return -1;

}

// Set clock frequency
set_clock(50);

// Start programming the frequency registers
start_programming(FREQ_REGS);

// Program the registers in order from 0 to 15
// Valid units are MHz, kHz, and Hz - default is MHz

set_freq(1*MHz); // Set register 0
set_freq(2*MHz); // Set register 1
set_freq(3*MHz); // Set register 2
set_freq(4*MHz); // Set register 3
set_freq(5*MHz); // Set register 4
set_freq(6*MHz); // Set register 5
set_freq(7*MHz); // Set register 6
set_freq(8*MHz); // Set register 7
set_freq(9*MHz); // Set register 8
set_freq(10*MHz); // Set register 9
set_freq(11*MHz); // Set register 10
set_freq(12*MHz); // Set register 11
set_freq(13*MHz); // Set register 12
set_freq(14*MHz); // Set register 13
set_freq(15*MHz); // Set register 14
set_freq(16*MHz); // Set register 15

// Start programming the phase registers
start_programming(PHASE_REGS);

// Program the registers in order from 0 to 15
// Units are in degrees

set_phase(0); // Set register 0

8/9/20072

Appendix I: Sample C program

www.spincore.com

PulseBlasterPlus!
set_phase(22.5); // Set register 1
set_phase(45); // Set register 2
set_phase(67.5); // Set register 3
set_phase(90); // Set register 4
set_phase(112.5); // Set register 5
set_phase(135); // Set register 6
set_phase(157.5); // Set register 7
set_phase(180); // Set register 8
set_phase(202.5); // Set register 9
set_phase(225); // Set register 10
set_phase(247.5); // Set register 11
set_phase(270); // Set register 12
set_phase(292.5); // Set register 13
set_phase(315); // Set register 14
set_phase(337.5); // Set register 15

//Begin pulse program
start_programming(PULSE_PROGRAM);

int start, loop, sub; // define instruction labels

sub = 5; // Since we are going to jump forward in our program, we need to
// define this variable by hand. Instructions start at 0 and count

up

//Instruction format
//int pb_inst(int freq, int phase, int RF_Output_Enable, int flags, int

inst, int inst_data, int length)

// Instruction 0 - Jump to Subroutine at Instruction 4 in 1us
start = pb_inst(0,0,ANALOG_OFF,0x3FF,JSR,sub,1*us);

// Instruction 1 - Beginning of Loop (Loop 3 times). Continue to next
instruction in 1us

loop = pb_inst(0,0,ANALOG_OFF,0x0,LOOP,3,1*us);
// Instruction 2 - End of Loop. Return to beginning of loop or continue

to next instruction in 1us
pb_inst(0,0,ANALOG_ON,0x0,END_LOOP,loop,1*us);

// Instruction 3 - Stay here for (5*1us) then continue to Instruction 4
pb_inst(0,0,ANALOG_OFF,0x0,LONG_DELAY,5,1*us);

// Instruction 4 - Branch to "start" (Instruction 0) in 1us
pb_inst(0,0,ANALOG_OFF,0x0,BRANCH,start,1*us);

// Instruction 5 - Continue to next instruction in 2us
pb_inst(0,0,ANALOG_OFF,0x0,CONTINUE,0,2*us);

// Instruction 6 - Return from Subroutine to Instruction 1 in 2us
pb_inst(0,0,ANALOG_ON,0x0,RTS,0,2*us);

// End of programming registers and pulse program
stop_programming();

// Start execution of the pulse program
start_pb();

// Release PusleBlasterDDS resources
ClosePMster();

return 0;
}

8/9/20072

www.spincore.com

PulseBlasterPlus!

PulseBlasterPlus! can be customized to fit some specific needs. Below is a
sample list of available options.

1. Custom master-clock frequency.
2. Temperature-controlled crystal oscillator.
3. Custom output connectors.
4. Reset/Running/Stopped status signals wired to an output connector.
5. Custom software.

To discuss your specific needs, please contact SpinCore Technologies, Inc., at
sales@spincore.com.

8/9/20072

Appendix II: Available Custom Options

