
A Modified Spinapi USB library for OSX

Included here you will find modified spinapi source code (incorporating changes made up to

September 4, 2007), a functioning dynamic library, and an Xcode Tools project file. These

instructions describe how to take the included, modified spinapi source code, and compile and

link it into a dynamic library (dylib) under Apple OSX for use with a RadioProcessor USB

board. After this is done, you will have the following capabilities:

• You should be able to compile, link, and use any pulse programs that use USB

Radioprocessor boards. The only functions that I know definitely behave differently are

pb_init and pb_select_board (see below), but this should have no effect in most cases.

• You can write programs to control up to 8 boards; this can be increased in the file

spinapi.h if desired – note that the default spinapi code comes with the maximum number

of boards set to 32.

A couple of things to note:

• Because I built the library up over time based on functions I needed, the source files

don’t always have the same name as the spinapi source files. This could be confusing,

please feel free to contact me with questions.

• The primary file that interfaces with USB under OSX here is driver_usb_osx.c. However,

there are differences that show up in other source files; for example, the original spinapi

uses the watchdog timer to tell if data transfer has timed out. Under OSX there are

“timeout” versions of USB read (and write) statements that can be used instead, so these

are used here rather than watchdog.

• OSX interfaces with devices differently than most unix os’s, so these files (particularly

driver_usb_osx.c) will not be helpful to develop versions of spinapi for other unix

flavors.

• Some functions don’t work exactly the same as the original spinapi code; for example,

pb_init initializes all of the boards it finds on the USB bus at once, you can then use

pb_select_board to select any board at any time.

• When pb_init() is executed, the boards are ordered by their USB location id in the case of

multiple boards. This gives them a software-independent ordering that I have found

generally follows the port number when the boards are all connected through a USB hub

(e.g. port 0 will become board 0, etc).

The installation instructions that follow assume you have Xcode Tools installed on your Mac.

This is included in the main installation disk for the operating system in case you don’t have it

already installed – it can also be downloaded from the Apple web site

http://developer.apple.com. It is also assumed you are familiar with entering unix commands

from the Terminal, and that you are also familiar with unix file permissions.

1. Expand the included tar file. You should then have a directory spinapi_osx_lib0907, inside

of which you will find a subdirectory Build/Release. The dynamic library file included there,

libspinapi_osx_lib.dylib, is a version of the modified spinapi library for Intel processors

only. This library file does not need to be re-compiled and re-linked, but this could easily be

done in Xcode if needed. I intended originally to make a build for PPC Macs as well, but ran

into a few difficulties: the Radioprocessor board appears to only work with USB 2, and all of

the PPC Macs I was able to borrow only had USB 1.1. If it were desired to make a PPC Mac

library, I think it should be possible, but one needs to watch out for byte order effects: the

byte ordering is reversed on PPC vs Intel processors. This will definitely have an effect on

how the data are written (functions such as pb_write_ascii, etc), and may also affect the way

frequencies and phases are loaded onto the board (this is because these functions load large

integers onto the board one byte at a time) – unfortunately I didn’t have a chance to check. If

you do want to try compiling a PPC version, please feel free to contact me.

2. Before attempting to use the library, put the dylib file into a directory that is easily accessed

by the compiler – I recommend /usr/local/lib; e.g. cp libspinapi_osx_lib.dylib /usr/local/lib.

You can also create a symbolic link.

Now, you just need to compile your programs; note that spinapi.h needs to be in the same

directory as the program you are compiling (or in a shared directory such as /usr/local/include) in

order build the programs as written in the example code. For example, to build the excitation test

program included in the RadioProcessor directory, for example:

cc excite_test.c -lspinapi_osx_lib –o excite_test

That is all that is required.

Tom Pratum, Department of Chemistry, Western Washington University,

September 30, 2007, pratum@chem.wwu.edu

