PulseBlaster

[image: image1.png]O
SinCore

Technologies, Inc.



[image: image2.jpg]


 
PulseBlasterAD™
PCI Board Rev. 02

Owner’s Manual 


Models:

PBAD-50


SpinCore Technologies, Inc.

http://www.spincore.com 


Congratulations and thank you for choosing a design from SpinCore Technologies, Inc.


We appreciate your business!

At SpinCore we try to fully support the needs of our customers.  If you are in need of assistance, please contact us and we will strive to provide the necessary support.

© 2000-2003 SpinCore Technologies, Inc. All rights reserved.
SpinCore Technologies, Inc. reserves the right to make changes to the product(s) or information herein without notice.  PulseBlasterAD™, PulseBlasterDDS™, PulseBlaster™, SpinCore, and the SpinCore Technologies, Inc. logos are trademarks of SpinCore Technologies, Inc. All other trademarks are the property of their respective owners.

SpinCore Technologies, Inc. makes every effort to verify the correct operation of the equipment.  This equipment version is not intended for use in a system in which the failure of a SpinCore device will threaten the safety of equipment or person(s).
Table of Contents 

3I. Introduction

Product Overview
3
Features
3
Board Architecture
4
Block Diagram
4
Block overview
4
Input signals
5
Timing characteristics
5
External triggering
5
Real-time Signal Averaging
5
Software Control
5
Summary
5
Specifications
6
Analog Input Specifications
6
Sampling Parameters
6
Signal Averaging Specifications
6
II. Installation
7
Installing the PulseBlasterAD Driver
7
Testing Control of the PulseBlaster
8
III. Software Control of the PulseBlasterAD
8
Initialization Functions
8
Reading and Writing Hardware Control Registers
8
Triggering and Resetting
9
Downloading RAM
10
Example C++ program:
10
IV. Connecting to the PulseBlasterAD Board
12
Connector Information
12
Header JP100
12
Contact Information
13



I. Introduction

Product Overview 

The PulseBlasterAD( device is an intelligent data acquisition and real-time quadrature signal-averaging unit.  

Data acquisition and instrument control are increasingly implemented with the use of commodity computers running non-real-time operating systems and equipped with analog-to-digital (A/D) boards. Upon digitization of signals, data must be transferred to the host processor for signal averaging. To avoid losing data acquired in real time, some boards utilize bus mastering and data streaming techniques to off-load the sampled data to the host processor/memory. However, even with data buffers of large sizes, the operating system's latencies limit the usefulness of the method to relatively low repetition rates. For improved performance one may use a general-purpose digital signal processor (DSP) on the A/D board for signal averaging. Unfortunately, the programming of DSP-equipped boards and their subsequent use in NMR systems could be a daunting task, especially as the complexity and processing power of modern DSP processors increase well beyond that required for free induction decay (FID) signal acquisition. 

Here we present a dedicated, task-oriented processor for acquisition and signal averaging of quadrature analog signals. The processor core has been developed in hardware description language (HDL) and implemented on a programmable-logic chip.  The processor stores the averaged signals in a dedicated SRAM chip for off-loads to the host computer when needed by the user (e.g. for display, Fourier processing, or storage). As off-loads are not dictated by the incoming data stream, the requirements for real-time operating systems, bus mastering, or data buffers are thus removed. 

The processor core resides in an EPROM and is loaded to the programmable chip upon power-on, thus freeing the user from the necessity to program the chip from the host computer. As implemented, A/D converters sampling at the max. frequency of 2.2 Ms/s limit the performance of the test system. Despite this limitation, the repetition rate can be as short as the sampling clock period. In general, the performance of the dedicated averaging system-on-a-chip for FID signals can match or even exceed the performance of a general-purpose DSP chip, without the complexities associated with general-purpose DSP processors or data streaming techniques. 

Features

· The entire acquisition system has been implemented on a 1/2 size four-layer PCI board.

· SMA connectors are used for input and trigger signals.   The A/D converters are Linear Tech. LTC1414, 14 bit resolution, 2.2 Ms/s max. sampling rate. 

· The signal averaging processor is implemented in programmable chip logic with the Altera Acex, approx.100k gates.   

· Additional off-chip memory Cypress SRAMs.   

· PCI interface implemented with AMCC S5920 PCI Matchmaker chip.   

· Power is supplied via PCI header - on board linear regulators are used with ample decoupling (tantalum) capacitors.   

· Bracket-mounted DB-25 connector can serve as I/O for digital (TTL) interface, e.g., for external A/D converters.  

· On-board crystal oscillator serves as the master clock oscillator.   

· Socketed EPROM for design updates and boot-loading 

Board Architecture 

Block Diagram 

Figure 1 presents the general architecture of the PulseBlasterAD system. The major building blocks are the Timing Core, ADC Controller, Averaging System, PCI Control Interface, RAM Controller, and RAM Memory (both internal and external to the processor).  A brief overview of each block is provided below.  The entire logic design, excluding output buffers, is contained on a single silicon chip, making it a System-on-a-Chip design. User control to the system is provided through the integrated bus controlled over the PCI bus.










Figure 1: PulseBlasterAD board architecture

Block overview

Timing Core
The Timing Core of Figure 1 houses the hardware control registers and generates timing signals for rest of the system upon receiving a hardware or software trigger.
PCI Control Interface
Controls data transfer between software and the board architecture.  Provides functionality for reading and writing the hardware control registers, reading the contents of the RAM, and triggering the Timing Core. 

ADC Controller
The system contains two 14-bit ADCs for quadrature data detection.  They are controlled by the Timing Core and present data to the Data Averaging System.

Averaging System
This system reads previous values from the RAM and averages them with the incoming data based on the pattern register.  The data is then written back into the RAM.  On the first acquisition of an experiment, the data read from the RAM is ignored and overwritten.

RAM Controller
This system contains interfaces to both the Data Averaging System and the PCI Interface.  Since the data from the Data Averaging System is time critical, the Arbitrator gives its data priority.  It sends a busy signal back through the PCI interface, which informs the user interface to try the read again.

RAM
A small on-chip RAM can be used, which can contain 512 32-bit complex data points.  An off-chip RAM can be used, which can contain 256k (262144) 32-bit complex data points.

Input signals

The PulseBlasterAD comes with three SMA connectors: two for input to A/D convertors and one for an external trigger.  The A/D converters are Linear Tech. LTC1414, 14 bit resolution, 2.2 Ms/s max. sampling rate with ±2.5V Bipolar Input Range.   

Timing characteristics


The PulseBlasterAD uses an external 50 MHz crystal oscillator.  The PulseBlasterAD can currently sample from from 0.06 kHz to 100 kHz.   

External triggering 

PulseBlaster can be triggered externally via dedicated hardware lines.  The two separate lines combine the convenience of triggering (e.g., in cardiac gating) with the safety of the "stop/reset" line.  The required control signals are “active low” (or short to ground).

Real-time Signal Averaging

The PulseBlasterAD performs signal averaging on-the-fly.  For a single acquisition, the board’s architecture adds or subtracts the incoming complex points with the complex points in memory.  Also, for a single acquisition, it can swap the incoming channels. Therefore, different combinations of add or subtract and swap incoming channels can be specified for each acquisition.  This specification is referred to as the signal-averaging pattern and is written to via software.

Software Control

Software has been developed in the C++ programming language that can read or write the hardware control registers, read the contents of the on-board memory, and trigger an acquisition.  The C++ functions rely on a device driver for communicating with the PulseBlasterAD.  The device driver is currently available for Windows 98 and XP operating systems.  Please email sales@spincore.com if you have a different operating system.    

Summary

The PulseBlasterAD( device is an intelligent data acquisition and real-time quadrature signal-averaging unit.  It can sample from 0.06 kHz to 100 kHz.   

Specifications

Analog Input Specifications

· Two independent analog input channels

· 2.5V maximum  bipolar input voltage

· 500 ohm input impedance

· 14-bit sampling resolution, extended to 32 bits upon signal averaging

· 5 MHz 3dB bandwidth

Sampling Parameters

· Internal, programmable sampling engine, triggered with a hardware or software trigger

· Sampling rates from 0.06 kHz to 100 kHz per channel

· External trigger, TTL level (active low).

Signal Averaging Specifications

· Quadrature signal averaging on-the-fly, between sampling points

· arbitrary averaging pattern - co-adding, co-subtracting, and channel swapping uder user control, up to eigth-level phase cycling (one scan per cycle).

· maximum number of scans 262144 (256k).

II. Installation

Installing the PulseBlasterAD Driver

For operating systems other than Windows 98 and XP, please contact sales@spincore.com

For Windows 98 and XP:

1. Go to http://www.pulseblaster.com/PAD/ and download pad_driver_and_software.zip.

2. Unzip the files to their own directory.


3. Turn off your computer.


4. Insert the PulseBlasterAD board into an empty PCI slot.


5. Turn on your computer.

Windows 98:


6. After booting, an “Add New Hardware Wizard” dialog box will appear.  Click the Next Button.

7. Select Search for the best driver for your device (Recommended) and click the Next button.


8. Select Specify a location and click the Browse… button.

9.   Browse to the folder you created when downloading the drivers and click on the windows_drivers         directory and click the OK button.

10. You will return to the previous screen.  Now, click the Next button.

11. Windows is now ready to install the PulseBlaster driver.  When you see the following screen, click the Next button.

12.  Windows will now copy the necessary files to your PC.  When the process completes, click Finish.


Windows XP:


6. After booting, an “Add New Hardware Wizard” dialog box will appear.  Choose “Install from a specific location” and click the Next Button.

7. Select Search for the best driver for your in these locations.  Click the browse button and navigate to the folder you created when downloading the drivers and click on the windows_drivers directory and click the OK button.

8. Click the Next button.

9. Click the Continue Anyway button.


10. Windows will now copy the necessary files to your PC.  When the process completes, click Finish.



You are now ready to test control of the PulseBlaster board!
Testing Control of the PulseBlaster

Navigate to the root directory of the unzipped files.  

Run “test_control.exe” and observe the output.  

III. Software Control of the PulseBlasterAD

The C++ functions for communicating with the architecture are located in the file:

http://www.pulseblaster.com/PAD/pad_driver_and_software.zip.  

The C++ functions are located in pad_c.cpp and their protoypes in pad_c.h.  These functions make use of the Windows driver PAD03PC.dll.

The functions were developed using microsoft visual c++ 6.0 on a Windows 98 and XP machine.  

For the C++ funtions to work under another operating system, say Linux, the write_reg and read_reg functions need to be changed to use the Linux module.

load_dlls() and shutdown() are windows specific because they load the windows dlls and release them.

Initialization Functions

int load_DLLs();

Loads the DLL and gains control of the PBAD board.  Must be called before any other function.  Returns 0 if succeeds and negative if fails.

void shutdown();

Unloads the DLL and releases control of the PBAD board.  Returns 0 if succeeds and negative if fails.

Reading and Writing Hardware Control Registers


int set_NP(int NP);

Sets the number of points for an acquisition.  Returns 0 if succeeds and negative if fails.

int read_NP();

Reads the number of points for an acquisition.  Returns 0 if succeeds and negative if fails.

float set_SW(float SW);

Sets the spectral width for an acquisition.  Assumes SW is in kilohertz.

Returns the actual SW if succeeds and negative value if fails.  Note that the actual spectral width may differ slightly from the specified spectral width because of differing representations of between the board’s architecture and the PC. 

float read_SW();

Read the spectral width for an acquisition.  Returns 0 if succeeds and negative if fails.

int write_seq(char * s);

Write a signal averaging pattern sequence specified by the string pointed to by s. Returns 0 if succeeds and negative if fails 

int read_seq(char * pattern);

Read a signal averaging pattern sequence into string pointed to by pattern. Returns 0 if succeeds and negative if fails

Note on pattern:

The write_seq function reads a null-terminated string of chars from left to right, and converts each character (must be decmial integer between 0 and 8) to the appropriate "line" in pattern.  A maximum of ten characters  are allowed.  If more than ten are given, only the first ten are read.

The following is an example of a four "line" signal-averaging pattern:

1.  (no swap) Add/Add

2.  swap Add/Sub

3.  (no swap) Sub/Sub

4.  swap Sub/Add

Each "line" corresponds to swapping or no swapping of the ADCs, real ADC add or real ADC subtract, and imag ADC add or imag ADC subtract.  The pattern register on board is 30 bits, and each "line" is represented by 3 bits,  so 10 "lines" is the maximum allowable pattern. Each line has 8 possibilities:

0.  (no swap) Add/Add

1.  (no swap) Add/Sub

2.  (no swap) Sub/Add

3.  (no swap) Sub/Sub

4.  swap Add/Add

5.  swap Add/Sub

6.  swap Sub/Add

7.  swap Sub/Sub

Each character in the string corresponds to one of the 8 possibilities.  So, the four line example pattern above corresponds to the string "0536"

Triggering and Resetting


void init_trigger();

Makes PBAD board ready to accept hardware of software trigger.  PBAD will not accept a trigger until this function is called.    

void soft_trigger();

Sends software trigger.  

int reset();

Resets the board. Returns 0 if succeeds and negative if fails.

Note on triggering:

The PBAD board will not trigger until init_trigger is called.  This is to prevent the board from receiving a trigger before its hardware control registers are initialized.  The programmer must ensure that all hardware control registers are initialized before calling init_trigger and soft_trigger.  If the registers are not initialized, the board may behave unpredictably and stop responding.

Downloading RAM 

int download_ram(char * fname);

Downloads contents of the on-board ram to an ascii file.  Returns 0 if succeeds and negative if fails.

int make_felix(char * fnamein, char * fnameout);

Converts an ascii file created by download_ram(char *fname) to a file readable by the program Felix for Windows. Returns 0 if succeeds and negative if fails.

Example C++ program:

The following source code is provided in pad_driver_and_software.zip.  It is an example program showing how to load the DLLs, set the hardware control registers, sent a software trigger, and download the contents of the ram.  It is “example.cpp”.

#include "pad_c.h"

#include <stdio.h>

#include <iostream.h>

char * fname = "test.txt";

char * felixfname = "test.fid";

const int NP = 1024;

const float SW = 10;

char * pattern = "0536";

int main()

{


//load DLLs


int ret = load_DLLs();


if (ret<0)


{ printf("Failed to load DLL to communicate with PAD board\nmake sure the PulseBlasterAD board appears in device manager as \"PBAD\" and PAD03PC.dll is in the current directory\n"); return -1; }


printf("DLL successfully loaded\n");


//set NP


set_NP(NP);


ret = read_NP();


printf("NP:%d\n", ret);


//set SW


float actual_SW = set_SW(SW);


printf("SW:%f\n", actual_SW);


//set pattern


write_seq(pattern);


//initialize trigger


init_trigger();


//reset


reset();



//send software trigger


soft_trigger();


printf("Trigger sent...press enter to download ram\n");


char cont;


cin.get(cont);


printf("Downloading ram\n");


//download ram


download_ram(fname);


//convert to felix for windows file format


printf("Making felix file\n");


make_felix(fname, felixfname);


printf("Program complete.  Acquired data saved in ascii format as %s and Felix for Windows format as %s\n", fname, felixfname);


//release DLLs


shutdown();


printf("Press enter to continue\n");


cin.get(cont);


return 0;

}

IV. Connecting to the PulseBlasterAD Board

Connector Information

DB-25  - UNUSED
Header JP100


This is an input connector, for hardware triggering (HW_Trigger) and resetting (HW_Reset).

HW_Trigger is pulled high by default, and pin 1 is active (pin 2 = GND).  When a falling edge is detected (e.g., when shorting pins 1-2), it initiates code execution.   This trigger will also restart execution of a program from the beginning of the code if it is detected after the design has reached an idle state.  The idle state could have been created either by reaching the STOP Op Code of a program, or by the detection of the HW_Reset signal.  When the WAIT Op Code is used in the pulse program, the HW_Trigger will cause the program to continue to the next instruction.

HW_Reset is pulled high by default, and pin 3 is active (pin 4 = GND).  It can be used to halt the execution of a program by pulling it low (e.g., by shorting pins 3-4).  When the signal is pulled low during the execution of a program, the controller resets itself back to the beginning of the program.  Program execution can be resumed by either a software start command or by a hardware trigger.

Contact Information

Phone



(352) 271-7383


FAX




(352) 371-8679


Email




sales@spincore.com


Web




http://www.spincore.com/

Product URL:

http://www.pulseblaster.com/CD/PulseBlasterAD





















External Trigger 











Software Control 





RAM


Controller





RAM Memory





Quadrature 


FID 





ADC Controller





Timing Core








External


Trigger








PCI Control


Interface





Averaging


System








11

3/10/2005

_1099320038.xls
Sheet1

		WE Register		Value (hex)

		Program Memory		0

		Change Flags Only		FF






