CO

Technologies, dnec.

Owner’s Manual for the
PulseBlasterDDS Ultra™

Complete Digital Excitation System:
Direct Digital Synthesis (DDS),
Arbitrary Waveforms, and TTL

SpinCore Technologies, Inc.
3525 NW 67™ Avenue
Gainesville, Florida 32653, USA
Phone: (352)-271-7383

http://www.spincore.com

Congratulations and THANK YOU for choosing a design from
SpinCore Technologies, Inc. We appreciate your business. At
SpinCore we try to fully support the needs of our customers, so if you
ever need assistance please contact us and we will strive to provide the
necessary help.

© 2000- 2002 Spi nCore Technol ogies, Inc. Al rights reserved. SpinCore
Technol ogies, Inc. reserves the right to make changes to the product(s)
or information herein without notice. Pul seBl asterDDS™ Pul seBl aster ™
Spi nCore, and the SpinCore Technol ogies, Inc. |logo are trademarks of
Spi nCore Technol ogies, Inc. Al other tradenarks are the property of
their respective owners.

Spi nCore Technol ogi es, Inc. nmakes every effort to verify the correct
operation of the equipnent. This equiprment should NOT, however, be
used in systemwhere the failure of a SpinCore device will cause
serious damage to ot her equipnment or harmto a person

1

Contents

Section I: Introduction
1 Quick Product Overview
2 Quick Installation Guide

Section II: PulseBlaster Core Design
1 Design Overview
2 Machine Language
3 Control Commands
4 Board Initialization
5 ISA Bus Programming Issues
6 Header/Jumper Information

Section lll: DDS Basics
1 General Description
2 Calculating Frequency

Appendix |
Programming Notes

Appendix Il
Sample C program (echo2.c)

[e2 0~

10
14
16
17
19

28

37

Section I: Introduction

1. Quick Product Overview

The Pul seBl asterDDS(tm series of Intelligent Pattern and Waveform
CGeneration boards from Spi nCore Technol ogies, Inc., couples SpinCore’s
unique Intelligent Pattern Generation processor core, dubbed
Pul seBl aster(tm, with Direct Digital Synthesis (DDS) AND Arbitrary
Wavef orm Generati on (AW technology for use in systemcontrol and
wavef or m gener ati on.

The Pul seBl aster’s(tnm state-of-the-art timng processor core,
i mpl enented in programmabl e | ogic, provides all the necessary timng
control signals required for overall systemcontrol and waveform
synchroni zat i on. By addi ng DDS and arbitrary waveform generation
features, Pul seBlasterDDS(tn) can now provide not only digital (TTL)
but al so anal og out put signals, neeting high-performance and high-
preci sion conplex excitation/stinmuli needs of demandi ng users.

Pul seBl asterDDS(tm provides users the ability to control their
systems through the generation of fully synchronized (digital and
anal og) excitation waveforns froma small formfactor PC board,
provi ding users a conpelling price/performnce proposition unnmatched by
any other device on the market today. Figure 1 presents sanple
capabilities of the board.

Figure 1. Sample PulseBlasterDDS(tm) output capabilities

2. Board Architecture

Block diagram

Figure 2 presents the general architecture of the Pul seBl asterDDS(tm
board. The DDS, Modul ator (optional), Pulse Timng and Gating cores
have been integrated onto a single silicon chip. The internal DDS core
has four frequency registers that are under the pulse program control
Prior to gating, the internal DDS signal can be anplitude-nodul ated
with arbitrary waveforns (up to 32k sanpl es) stored on on-board nenory,
al so under pulse programcontrol. Optionally, PulseBlasterDDS(tm
boards can be equi pped with two i ndependent off-chip DDS generators.

| Inderzal Micdulston |
o o,
~
Erbicrmal D05 Cars al A ______H.-‘—l- B (SMA Connector)
Frequency end o
Pluess Begisiers [.
Erdinal cligial gabe [l T e & (ShlA Connecter)
Izstmcticn -
Dy Value
Fgmter & (ZMA Connector)
Fsmp it
Winlise i
Bagmter & (EMA Connector]
Cratput end
Cioatwol —
R st o
TTL Chatpiats
Tissing Core Palse Programmer mwd HOTES
— | DDS Processor . Cravhonnd DAL cepn kave 12 bt msokeion, Cutpat
vl b hapenday.
Cleck 2 Esctarral TDE chips comsain siagrated 10k DA,
A — Oyt pan vo e 1 posiinesly biased (12 cofpd werpliade)
ml E T & hoot om e schwsabics denoter Faber Bor edewal
DT chape. Satong syl sow dsraesd fioow the depial
Figure 2. PulseBlasterDDS Board ety word
Z Thars e upbo oo wendsbls DS siprals, tat ondr S
L] ZHA romracir. Comeses wll ks harberred parwas
© 2001 SpinCore Technologies, Ine. apecliedive. Gmpergeimes i H e

Fig. 2. PulseBlasterDDS(tm board architecture.

e PulseBlasterDDS U tra does not support Anplitude Control or externa
DDS chi ps

Output signals

This exciting product cones with up to two anal og out put channel s
that can be configured to output radio-frequency (RF/IF) waveforns,
arbitrary waveforns, or a conbination of both, and up to 10 digita
out put signal lines. The frequency and phase of the RF wavefornms
generated by the DDS out put channels are under the conplete control of
the user and are specified through software programmng. The arbitrary
waveform patterns are al so under the control of the user and are stored
in on-board nenory. Pul seBlasterDDS(tm) al so provides the ability to
gate the output of the DDS channels allow ng for independent pul sed RF
operation of all output channels. Wth digital sanmpling rate of 100 MHz
(max. clock frequency, internal DDS core only), analog signals up to
approx. 50 MHz can be generated. Both anal og output signals are
avai | abl e on on-board SMA connectors. The output inpedance of the
anal og signals is 50 ohns.

The individually controlled digital (TTL/CMOS) output bits are capable
of delivering +-25 mA per bit. Twenty-four of the output |ines can be
set to either the 5 Vor 3.3VI/OTTL logic standard. Up to 16 digita
TTL output lines are avail able on the PC bracket-nounted DB-25
connector; the remaining TTL signals are available on internal, flat-
cabl e headers. The actual nunber of the available output bits depends
on the nodel of Pul seBl asterDDS(TM board/ desi gn

Timing characteristics

Pul seBl asterDDS™ timng controller can accept either an interna
(on-board) crystal oscillator or an external frequency source of up to
100 MHz. The innovative architecture of the timng controller allows
the processing of either sinple timng instructions (delays of up to
4,294,967, 296 clock cycles), or double-length timng instructions (up
to 2752 clock cycles long - nearly 2 years with a 100 MHz cl ock!).
Regardl ess of the type of timng instruction, the timng resolution
remai ns constant for any delay — just one clock period (e.g., 10 ns for
a 100 MHz clock, or 100 ns for a 10 MHz cl ock).

The core timng controller has a very short mninumdelay cycle — only
five clock periods for internal nermory (512 words) nodels. This
translates to a 50 ns pul se/del ay/update with a 100 MHz cl ock. The
external nenory nodels (up to 32k words) have a nine-clock period
m ni mum i nstruction cycle.

Instruction set

Pul seBl ast er DDS™ desi gn features a set of conmands for highly
flexible programflow control. The nicro-programed controller allows
for progranms to include branches, subroutines, and |oops at up to 16
nested levels — all this to assist the user in creating dense pul se
prograns that cycle through repetitious events, especially useful in
nunerous mul tidi mensi onal spectroscopy and inagi ng applications.

For detail ed description of the instruction set and programm ng,
pl ease consult the Pul seBlaster’s Oaner Manual, available on SpinCore’s
web site (http://ww. spincore.conf support).

Programming architecture and word definition

The Pul seBl aster ™ processor inplenents an 80 bit w de Very-Long
Instruction Wrd (VLIW architecture. The VLI W nenory words have
specific bits/fields dedicated to specific purposes, and every word
shoul d be viewed as a single instruction of the mcro-controller. The
maxi mum nunber of instructions that can be accommpdated on on-board
menory is 32k. The execution tine of instructions can be varied and is
under (self) control by one of the fields of the instruction word. Al
i nstructions have the same format and bit length, and all bit fields
have to be filled. Figure 3 shows the fields and bit definitions of
the 80-bit instruction word.

Bit Definitions for the 80-bit Very-Long Instruction Word (VLIW)

Qut put Pattern:79-56 | Data Field:55-36 | OP Code:35-32 | Delay Count:31-0

(24 bits) (20 bits) (4 bits) (32 bits)

Figure 3. Bit definitions of the VLIWinstruction/nenory word.

Several bits of the output pattern are dedicated to selecting the
avai | abl e frequency/ phase regi sters and gating the RF/ AWG signals, and
are design/ nodel specific. For exanple, for the design featuring a
single internal DDS generator and two independently gated outputs
(denoted, for conveni ence, TxDDS and RxDDS), the bit assignnent is as
fol | ows:

| Bit# (out of 24 bit of output Function
pattern word)

1 Bit#0 Output Connector DB25, pin # 13
2 Bit#1 Output Connector DB25, pin # 25
3 Bit#2 Output Connector DB25, pin # 24
4 Bit# 3 Output Connector DB25, pin # 11
5 Bit# 4 Output Connector DB25, pin # 10
6 Bit#5 Output Connector DB25, pin # 22

7 Bit# 6 Output Connector DB25, pin # 21

8 Bit#7 Output Connector DB25, pin # 8

9 Bit#8 Output Connector DB25, pin # 7

10 | Bit#9 Output Connector DB25, pin # 19

11 | Bit#10 Output Connector DB25, pin # 18

12 | Bit#11 Unavailable

13 | Bit#12 Unavailable

14 | Bit#13 Unavailable

15 | Bit#14 Unavailable

16 | Bit#15 Unavailable

17 | Bit#16 Unavailable

18 | Bit#17 Unavailable

19 | Bit#18 Unavailable

20 | Bit#19 Controls RxDDS Gate (0 = On, 1 = Off)
21 | Bit#20 Controls TxDDS Gate (0 = On, 1 = Off)
22 | Bit#21 Unavailable

23 | Bit#22 Frequency Select Bit 0

24 | Bit#23 Frequency Select Bit 1

For nodels featuring the internal nodulator (AW, the instruction
word is 96 bit wide, and the additional bit-field codes for the signal
anplitude of the analog output. Every word can have different signal
anpl i tude, and words can be updated every nine clock cycles (for 32k
menory word nodel s).

Using the provided C functions, programing of the board can be
acconpl i shed by using calls to functions of the general form
(del ay, output control word).

Exanpl e:

output_control _word = FREQD | TX DDS GATE ON | RX DDS GATE OFF | OxFFFF;
address = del ay(1*us, output_control _word, progran); //a 1 us interval in pul se sequence

out put _control _word = FREQB | TX DDS GATE OFF | RX_DDS _GATE OFF | 0x0000;
address = del ay(2*us, output_control_word, progran); //a 2 us interval in pul se sequence

Pl ease consult the provided Appendix for nmore information on
progranmm ng the Pul seBl asterDDS U tra.

Programming of DDS registers

The registers of the internal DDS core(s) are programed directly
over the systembus. The following is an exanple use of the C function
that was devel oped at SpinCore to aid in programr ng the avail abl e DDS
registers:

/* Program DDS internal frequency registers */
program dds(1, 0, 6.25, dds);
programdds(1, 1, 0.1, dds);

In the above exanple, two different frequency registers (0 and 1) of
the internal DDS core (#1) are loaded with two different frequency
val ues, 6.25 MHz and 0.1 MHz.

For details on progranmi ng the DDS section of the board, please consult
t he appendi x.

External triggering

Pul seBl ast er DDS™ can be triggered and/or reset externally via
dedi cated hardware |lines. The two separate |ines conbine the
conveni ence of triggering (e.g., in cardiac gating) with the safety of
the "stop/reset” line. The required control signals are “active | ow
(or short to ground).

Summary

Pul seBl asterDDS™is a versatile, high-performance pul se/pattern TTL
and RF/ I F/ AWG generator operating at speeds of up to 100 MHz and
capabl e of generating pul ses/delays/intervals ranging from50 ns to
over 2 years per instruction. It can acconmodate pul se prograns with
highly flexible control conmands of up to 32k program words. Its high-
current output logic bits are independently controlled and sone bits
are 5/3.3 V user-selectable. Up to four anal og channels (50 ohm
i npedance) are available froma single board.

2. Quick Installation Guide

Pul seBl ast er DDS™ boards are ready to use out of the box. After
unpacki ng, they can be installed on your conmputer in any available | SA
slot. Please shut down your conputer and turn the power off when
installing the board, and use a screw to fasten the bracket.

Pul seBl ast er DDS™ boards are factory pre-configured to operate with the
foll owi ng default settings:

| SA Base Address: 0x340.

Clock Gscillator: Internal, installed on board; clock frequency as
per custoner specification
Qut put | evel s: TTL 3.3 V

These settings can be changed using on-board junpers. Please consult
Chapter 6 in Section Il for details regarding the junpers’ information
and | ocati on.

The board can be used on conputers running any operating systemthat
supports the Industry Standard Architecture (ISA) bus, including DOS,
W ndows, QNX, and Linux. Third party drivers are available for
protected operating systens (Wn2000 and WnNT). Section IIl of this
manual , “Test and Application Prograns,” describes sanple prograns that
can be used to programthe board for operation under M crosoft
DOS/ W ndows95 operating systens. The C code described in this manual
can al so be conpil ed under nost other operating systems as well.

Spi nCore’ s web site http://www.spincore.com/support serves as a repository of
the software described in this manual.

http://www.spincore.com/support

Section II: PulseBlasterDDS™ Design

2. PulseBlasterDDS™ Specific
Information on C and Machine
Language programming.

WE for Peripherals: This register is used to select the peripheral
that is to be programmed. The value of this register that is used to
sel ect program nmenory is always zero and this is the default value for
the register. A conplete listing of the values and the associ ated
hardware that can be programmed when appropriately set.

WE Register | Value (hex)
Program Memory 0
Integrated DDS 1 1
Tabl e 3: Peripheral List

CLEAR ADDRESS COUNTER The Address Counter is used to manufacture the
menory address. The Address Counter is not |oadable; it can only be
cleared and started at zero. It is not possible to load a particul ar
section of menory. Al loads nust start fromeither the begi nning of
menory, or wherever the Address Counter left off.

Flag Initialization Strobe: The output flags of the Pul seBl asterDDS
can be progranmed while the device is in a reset state. This is useful
toinitialize flags after powering-up and to reset flags to a known
state if a program nust be aborted. Witing to the Flag Initialization
Strobe register will toggle the line used to clock data into the output
| at ches. Appendi x B provide nore informati on on how to use the Flag
Initialization Strobe to programthe output flags while the
Pul seBl asterDDS is in a reset state.

10

LOAD MEMORY: This instruction is used to specify data that should be
used to programthe nenory used by the device. Since the |SA data is
taken only one byte at a tine, the IBC nust reconstruct the data word
to be programmed. The data word is reconstructed in the |BC npst
significant byte first.

PROGRAMM NG FI NI SHED: Thi s instruction enables the pattern generator
of the Pul seBlaster™ This instruction prevents the pattern generator
fromaccepting a hardware trigger or software start conmmand before the
devi ce has been programed. Once the design has been programed, the
PROGRAMM NG FI NI SI HED conmand mnmust be sent to armthe device for
operation. After the pattern generator has been arned, any hardware
trigger or software start conmand will cause the systemto start
operation. The Pul seBl aster ™Mcan be reset by issuing the DEVI CE_ RESET
conmmand. This will internally clear the PROGRAMM NG FI NI SHED
instruction and prevent the pattern generator from operating again
until the IBC has been re-initialized.

11

4. |ISA Readback Features

Pul seBl aster products have the ability to provide status information to
the user through a group of registers that are readable through the |ISA
Bus. The registers provide information on the status of the

Pul seBl aster series device as well as the firmare version nunber.

The regi ster nunbers provided bel ow are offsets fromthe | SA port base
address assigned to the Pul seBlaster series card. All registers are 8
bits and are read only. |If the users attenpts to wite to the port
address associated with one of the registers, it will overwite data in
one of the IBC (ISA Bus Controller) control registers.

Only Register 0 and Register 1 are guaranteed to remain the same in
future rel eases.

Regi ster Definitions

Regi ster 0 — Control Signal Register
Bit 7: Reserved (Testing := Menory_NMNode)

Bit 6: IBC Error — indicates if there has been an error programing
the 1BC

Bit 5: Progranm ng_Finished — indicates that the Pul seBl aster series
devi ce has been programmed and is arned. The next trigger
(either Hardware or Software) will start execution of the
pul se progranmmrer code

Bit 4: Idle -

Bit 3: Waiting — The Pul seBl aster series device has encountered a
WAIT Op Code and is currently waiting for the next trigger
(either Hardware or Software) to resume operation

Bit 2: Running — indicates that the Pul seBlaster series device is
current executing a program

Bit 1: Reset — the Pul seBlaster series device is in a RESET state
and nust be reprogramred before code execution can begin
agai n.

Bit O0: Stop — indicates that the Pul seBl aster series device has
encountered a STOP Op Code during program execution and has
entered a stopped state.

Regi ster 1 — Version Control Register

Bits[7..4]: Product Type Nunber
Pul seBl aster (external nenory) = 0
Pul seBl aster (internal menory) =1
Pul seBl ast er DDS (PP only external nenory)
Pul seBl asterDDS (PP only internal nenory)
Pul seBl ast er DDS (si ngl e channel DDS) = 4
Pul seBl ast er DDS (dual channel integrated DDS) = 5
Pul seBl asterDDS (2 integrated, 2 external DDS) = 6
Pul seBl asterDDS (2 AWG, 2 DDS) = 7

2
3

Bits[3..0]: Rel ease Version Nunber

12

Regi ster 2 — Pul se Programmer Core Address LSB' s
Bits[7..0] : PP Core Current_ Address[7..0]

Regi ster 3 — Pul se Programmer Core Address MSB' s
Bits[7..0]: PP Core Current_Address[15.. 8]

Regi ster 4 — PP Core Del ay Counter Val ue (LSB)
Bits[7..0]: PP Core Delay_ Count[7..0]

Regi ster 5 - PP Core Del ay Counter Val ue (MSB)
Bits[7..0]: PP Core Delay_ Count[31..24]

Regi ster 6

Bits[7]: PP Core Loop_Done
Bits[6..4]: PP Core Control Mix[2..0]
Bits[3..0]: PP Core Control _Codes[3..0]

Regi ster 7
Bits[7..0]: PP Core Branch_Address[7..0]

13

5. PulseBlaster™ Board Initialization

Initialization of the Pul seBl aster DDS™ Board for operation involves a
m ni mum of four steps. The steps are as foll ows:

1) Send LOAD NUMBER OF BYTES PER WORD i nstructi on.
2) Send SELECT PERI PHERAL DEVI CE instruction
3) Send CLEAR ADDRESS COUNTER i nstructi on.
3.A (Optional) loading data to nenory.
4) Send PROGRAMM NG FI NI SHED i nstructi on.

I f these four comands are not sent froma PC, the Pul seBl ast er DDS™
board will not run as desired. All four instructions are required as
an attenpt to ensure that the device has been progranmed before it can
be arned. The first tine the board is used, the |oading of the menory
with data has to be perforned between steps three and four, step 3. A
above. Upon reset, all four instructions nust be executed to restart
t he devi ce agai n.

A Sanmple C code that inplenents the above commands is presented in the
appendi Xx.

14

5. ISA Bus Programming Issues

In order for the enbedded intelligent pattern generator to operate,
the menory it utilizes needs to be programred, and appropriate contro
bytes have to be sent over the |ISA Bus. To acconplish these tasks, a
speci al controller, called IBC (1 SA Bus Controller), was designed as
the interface between a PC and the Pul seBl aster ™ Pul se/ Pattern
Cener at or .

The 1 BC handl es progranmi ng the system nmenory for the pattern
generator, initializes the board, and controls its operation. Once the
system nenory has been initialized, the IBC relinquishes control of the
menory’ s data and address busses to the pattern generator. Wile the
pattern generator is running, it has conplete control of the menory
buses. The IBC does have the power to reset the pattern generator and
re-take control of the device. This allows for PC software to control
t he operation of the Pul seBl aster ™ Core Processor

NOTE: The data taken off the |ISA Bus is one byte wide - the 16-bit
data capability of the |ISA Bus was not used in order to conserve |/0O
pins on the mcrochip. Al so, the IBC controller does not have the
ability to wite information to the bus. However, if necessary, three
pi ns on Pul seBl aster ™s board, nanely RUNNING (J12-10), STOPPED (J12-
7), and SYSTEM RESET (J12-8) could be used to determ ne the status of
t he uPC.

ISA-Bus Base Port Address

Each device on the I SA Bus is mapped to a port address range. The
port address is used to specify that data on the bus is for a
particul ar peripheral device. The Pul seBl aster ™board desi gn has the
ability to change its port address. This ability provides for the fact
that other devices on the bus night have previously clained certain
port address ranges. Three control lines, running to the J4 header on
the Pul seBl aster ™card, allow one of eight port address ranges to be
sel ected. The port address ranges are fromthe ‘Base Address’ to the
‘Base Address + 7'. The Base Addresses that can be specified range
from 0x260 to 0x360, see Table 3 in the next chapter “Header/Junper
Information.” The factory pre-set value is 0x340

15

ISA Bus Controller

The |1 SA Bus Controller uses three control signals fromthe | SA Bus:
AEN, ~IOW and Bus Cock. The control signals are used to decode the
| SA Bus traffic. The Bus O ock signal is used by the IBC for tinmng
and it is conpletely independent of the systemclock of the
Pul seBl aster™ The AEN signal is active high and indicates an address
is on the bus, and that the address is fromthe DVA controller. In
order to avoid traffic fromthe DVA controller, the IBC |ooks for this
signal to be low The ~IOWVIline specifies that a wite (fromthe PC
processors point of view) is occurring. A wite indicates that the
data on the bus is destined for a peripheral device. |If both AEN and
~IOWNare low, the data on the bus is being witten to a periphera
device specified by the port address on the | SA Bus. The details of
this hardware comruni cation are hi dden fromthe user standpoint if one
uses the C | anguage functions outp() or _outp().

Sending Control Commands over the ISA Bus

Once the on-chip | SA Bus Controller, IBC, finds the correct values for
AEN and ~I ON the address and data values are latched into contro
regi sters. The address is then decoded to determine if the bus traffic
is addressed to the Pul seBlaster™ |If the address is in the defined
range for the Pul seBlaster™ then the address is used as a Control
Conmmand to drive the operation of the IBC. The IBC has eight distinct
Control Commands - see Table 2. The Control Command val ues are
specified in offsets fromthe Base Address. |If the Control Comrand has
data associated with it, the data |atched off the | SA Bus is used; else
the data buffer register is ignored.

16

6. Header/Jumper Information

The Pul seBl asterDDS™ board is a configurable system It allows the
user to set junpers on several headers on the PC card to sel ect
di fferent nodes of operation for the device.

Selecting ISA Bus Address: Header J4, Pins 1-2, 3-4, and 5-6.

The Base Addresses that can be specified range from 0x260 to 0x360.
The default, factory pre-set value for the | SA Pul seBl ast er ™board
is 0x340. This value can be changed, via junmpers on Header J4,
according to the Table 3.

Base Address Junper Settings — Header J4
(in Hex) Pins 5-6 Pins 3-4 Pins 1-2
300 | | |

320 | | :
340 | : |
| - :

260
280
270 : | :
290 : : |

Table 3. Board' s | SA-Bus Base Address Sel ection
(Legend: | junper across pins, : nho junper)

(Default Value = 0x340, junpers 1-2, 5-6).

17

Selecting output voltage levels: Headers JPower1 and Jpower 2

The output signals are driven by |atches/drivers capabl e of
running off a 5.0-V or 3.3-V supply. The supply voltage for the
drivers is selectable. Table 4, below, lists the configurations
for 5.0-V and 3. 3-V output driver operation.

5 V Operation
Jumper JPowerl-1 across to JPowerl-2
Jumper JPower2-1 across to JPower2-2

3.3 V Operation
Jumper JPower1-3 across to JPowerl-4
Jumper JPower2-3 across to JPower2-4

Table 4. CQutput voltage sel ection

The JPower1 header selects the operating voltage for the output
bits 0-15, and JPower2 independently selects the operating voltage
for the output bits 16-23.

OUtpUt BitS - connector DB 25 (J10) and Header J9

The following table lists the output bits for the Pul seBl aster™
Pul se / Pattern Generator Board.

18

Signal Location
Bit O J10-13
Bit 1 J10-25
Bit 2 J10-24
Bit 3 J10-11
Bit 4 J10-10
Bit 5 J10-22
Bit 6 J10-21
Bit 7 J10-8
Bit 8 J10-7
Bit 9 J10-19
Bit 10 J10-18
Bit 11 J10-5
Bit 12 J10-4
Bit 13 J10-16
Bit 14 J10-15
Bit 15 J10-1
Bit 16 J9-3
Bit 17 J9-5
Bit 18 J9-7
Bit 19 J9-9
Bit 20 J9o-11
Bit 21 J9-13
Bit 22 J9--15
Bit 23 J9-17
Output Clock J10-1
Running J12-10
Stopped J12-7
System Reset J12-8

Table 5. Qutput bits and signals of the Pul seBl aster DDS™ boar d.

Bits 15-0 are grouped on the external DB-25 connector (also narked
as J10) provided for accessing the signals. The rest of the bits, Bits
23-16, are accessible on an internal |IDC header J9. The table also
lists several additional output signals that are available to the
outside world, as described in the next subsection. Al renaining pins
on the DB-25 and all even pins of J9 connector are connected to the
gr ound.

19

Using external trigger/reset lines - reader JTri gger.

HW Trigger is a signal that is pulled high by default. Wen a
falling edge is detected (e.g., when shorting pins 3-4), it
initiates code execution. This trigger will also restart execution
of a program fromthe beginning of the code if it is detected after
t he design has reached an idle state. The idle state could have

been created either by reaching the STOP Op Code of a program or by
the detection of the HW Reset signal

The HWReset line is pulled high by a resistor. It can be used to
halt the execution of a programby pulling it low (e.g., by shorting
pins 5-6). When the signal is pulled |low during the execution of a
program the controller resets itself back to the beginning of the
program Program execution can be resuned by either a software
start command or by a hardware trigger

Additional OUtpUt Signals — Connector DB-25 and Header J12.

The internal Qutput C ock signal is available to the outside

world, as it is tied to the DB25 connector, pin #1. It is the
clock signal used to latch patterns in the output buffers. This

cl ock has been configured to have a relatively slow slew rate so as
to avoid noise problems on a transmission line. This clock is not

a 50% duty cycle clock. The width of the high part of the signa
is one system clock period.

System Reset — Header J12 pin # is used to indicate (when low) to
the external world that the uPC controller is in a reset state. |t

can be used in larger systens to nonitor the state of the
Pul seBl ast er ™M desi gn.

A signal that is simlar to System Reset is the Running signal,
header J12 pin #. It is driven high when the uPC is executing

code. It is taken | ow when the uPC has entered either a reset of
idle state.

The Stopped signal, header J12 pin #, is the last signal used to
i ndicate the state of the uPC. Stopped is asserted when the uPC
has encountered the stop command while normal |y executing code.
This signal informs the external world that the uPC has
successfully executed its program and has hal ted operation

20

Header and Signal Locations

The | ocation of the rel evant headers and connectors on the
Pul seBl ast er DDS™ board is presented in Figure 3.

svd J4 SMVA3 SMA2 J Power2 J_Powerl J10(DB-
25)

J12

Figure 3. PulseBlasterDDS Board — header/connector locations.

21

Section lll: DDS Basics

1. General Discussion of DDS
Technology

Direct Digital Synthesis can be used to generate sinusoida
waveforms fromtheir digital representations. The digita
representation of a signal is discrete in both tine and anplitude. To
generate a waveform the sanple anplitudes of the waveform are
calculated digitally and converted to a pseudo-anal og waveform by a
digital -to-anal og converter (DAC). The DAC has a step-like output
function, necessitating the use of an analog filter to snmooth out the
wavef orm and interpol ate between sanple values. The output of the
anal og filter approximates the desired anal og waveform A digita
systemw th enough bits for representing the waveform accurately and a
sanpling rate that is high enough to allow rejection of higher order
harnmonics wi |l produce an extrenely accurate and harnonically pure

signal. Figure 16 shows the signal generation line-up for a DDS
system The sections that follow will describe, in detail, the
operation and performance characteristics of each of the bl ocks shown
bel ow.

Phase Increment
v A DAC | _Analog Outp : '
alog Output | Interpelation | Reconstructed Waveform
Filter

Clock ; >

Figure 16: Analog Signal Generation Line-Up

Direct Digital Synthesizer (DDS) Architecture
The architecture of a DDS has three main bl ocks, see Figure 17. The
first block is |abeled the Frequency Control Register (FCR). The FCR is
used to latch the Phase Increment (Pl) value and synchronize it with the
rest of the DDS. The Pl controls the phase and frequency of the

22

PulseBlasterDDS

Clack ﬁ =

FPhase Increment > Frequency Control
Register

Phase
Leemrndator

Sine Lak-U DDS Output >
e g

Figure 17: DDS Architecture

DDS out put. The DDS uses phase accumul ation to create sinusoidal signals
of interest. It is the Pl value that specifies the amunt of phase to be
accunul ated between sanpl es.

To better understand why phase accunulation is used, it should be
noted that the phase difference between any two points of a constant

frequency sinusoid, sanpled at regular intervals, will be a constant
value. In other words, the phase of a sinusoid is linear with respect to
tine. The linearity of a sinusoid s phase with respect to tine is the

key for generating sinusoidal waveforns using phase accumul ation. Al
frequencies up to the Nyquist frequency can be created by accumul ating a
phase i ncrement between sanple times. Different frequencies are created
by varying the size of the phase step between sanpl e instances.

Therefore, by controlling the phase steps in time, the frequency and phase
of a signal can be controll ed.

The next block in the DDS is the phase accumul ator. The phase
accunul ator outputs a digital word representing a specific phase val ue.
The accuracy of the digital word representing the phase is deternined by
the nunber of bits used in the digital representation

21
Phase Resol ution = Eﬁr (in radians), [4]

where N is the nunber of bits in the phase word. The accuracy of the
digital representation can be increased by using a wider (nore bits) phase
accunul ator. Since phase accunulation is used to generate frequencies of
interest, the frequency resolution of the DDS is also directly controlled
by the length of the Pl input word. The frequency resolution can be
expressed by

Fclk

Frequency Resol ution = N [5]
where N is again the nunmber of bits in the phase word and F.« is the
frequency of the clock driving the DDS system
It should also be noted that the phase of a sinusoid repeats every 21
radians. This is beneficial for digital generation of sinusoidal signals.
The phase accunul ator will overflow every 2m radi ans and repeat itself in
an exact analogy to the phase of a sinusoid.

www.spincore.com 23 7/11/2002

PulseBlasterDDS

The third block is the Look-Up Table (LUT). The LUT is used to
convert a phase value to a corresponding anplitude in a nornalized
sinusoid. It is the output values fromthe LUT that are fed into a DAC.
Cenerally, only part of the phase accunulator’s output (the nost
significant bits) will be used by the LUT. This is done for severa
reasons. First, larger nenories are slower than smaller nenories using
t he sane technol ogy. The speed of the nmenory used to create the LUT is
critical in the performance of a DDS system Second, the perfornance
characteristics of the DAC used to generate the anal og waveformis the
limting factor in systemperformance. There is no need to have a | arge
LUT if the corresponding anplitude resolution provided is greater than the
resol uti on of the DAC generating the anal og output.

Digital to Anal og Converter (DAC)

There are many different types of DACs. Al DACs are sinmlar in
that a DAC accepts a digital word as input and outputs an anal og waveform
The digital word is used to represent a sanmple of the output waveform
specifying its magnitude. Since the digital input word specifies a
di screte magnitude that is held constant for one clock cycle, the output
of a DAC has a step-like response function

Sonme key characteristic of all DAC s are settling tinme, glitch
energy (switching transients), linearity, and precision. Settling tine
specifies how long it takes the DAC to achi eve opti mum perfornance after
powering on. ditch energy specifies how much energy is in the high
frequency transients caused by switching on the outputs. Linearity
descri bes the how uniformthe output step sizes are between adjacent
digital words. Precision is a nmeasure of how closely the DACis able to
make t he actual output match the theoretical output for a given digital
i nput word.

Reconstruction (Interpolation) Filter

Interpolation filters cone in many forms: active, passive, and
el ectro-mechanical. Al interpolation filters are used for one reason, to
“snooth out” the step-like response of the DAC output. The interpolation
filter can be either a | owpass or bandpass filter depending on the
undesi red frequencies introduced by the non-ideal sanpling. Wen the
interpolation filter “snpothes out” the DAC output, it is elimnating high
frequency harmonics of the signal of interest. It can also be used to
elimnate the high frequency glitch energy and switching transients of the
DAC.

Filters are a conpl ex design choice. Factors such as phase
linearity, frequency selectivity, and insertion loss are just a couple of
t he consi derations when choosing a filter. Filters also have noise
figures, varying attenuation capabilities in the stopbands, varying
transiti on bandw dth, and passband ripple characteristics. Al these
di fferent characteristics nmake such a di scussion outside the scope of this
di scussion. !

Sources of Error in Waveform Generation

There are several sources of error for a DDS Wavef orm Generati on
system They include: phase and frequency error introduced by the
sampling clock, glitch energy in the DAC, phase truncation in the Phase
Accurul ator, amplitude truncation in the LUT, the linearity of the DAC,
and the linearity of the Reconstruction Filter. Al these sources of
error are unavoidable in real systens.

! For a complete discussion of filtering considerations refer to Horn, 1992 — (16)

www.spincore.com 24 7/11/2002

PulseBlasterDDS

The phase noise in the output introduced by the sanpling clock is
mtigated to sone extent by the high sanpling rates used by DDS's to
construct waveforns. The phase noise inproverment in the output waveform
in conparison to the phase noise of the clock source, will be (18):

F
Phase Noi se |nprovenment = 20*|0910EI:°¢E [6]
out

The frequency noi se introduced by the sanpling clock is passed
directly through the DDS system Any frequency error seen in the clock
changes the sanpling rate of the DDS, noving the frequency response of the
DDS output. A systemrequiring extrenely accurate frequency
representati on should have a high stability clock as its reference. The
DDS, however, can be “tuned” to any crystal used and the frequency error
of the crystal can be conpensated for in the DDS if necessary.

The phase truncation can be controlled by the nunber of bits used in
t he phase accunul ator of the DDS. The nore bits used in the phase
accunul ator the snaller the phase truncation error. In custom designs of
DDS systemnms, the phase accumul ator width can be controlled. |If an off-
the-shelf part is used, care nust be taken to ensure proper wi dth of the
phase accunul at or.

Anplitude truncation is a two fold problem The first place where
it can occur is in the LUT of the DDS. Anplitude truncation can be
reduced by expandi ng the depth and/or width of the LUT nmenory. The second
source of error in anplitude truncation is the DAC. The linmting factor
in system performance will be the device, either the LUT or the DAC, which
has the shortest digital word. |In designing a system care should be
taken to properly match the LUT width and DAC wi dth to achi eve opti num
per f or mance.

The noise introduced by anplitude truncation is a function of the |ength
of the digital word used to represent a sanple’'s anplitude. The noise can
be nodel ed statistically and is dependent on the signal variance and the
full scale level of the DAC. The SNR of a signal with a given precision

in anmplitude is (13)
2
SNR :1OI0910%E
N
2%2%g °
SNR :lOIOng#H
XM

SNR(dB) = 6.02B +10.8 - 20l0g,, Eﬁx M E -
O-S

where osis the variance of the desired signal, oyis the variance of the
noise, Xyis the full scale |level of the DAC, and B is the nunber of non-
sign bits in a tw’ s conpl enent nunber. There is an assunption nmade that
the DAC s input is a twd’' s conplenment nunber. Note the last termin
Equation 7. It shows that the SNR i s dependent on the relationship of the
rms val ue of the signal anplitude with the full scale |evel of the DAC

It is inmportant, therefore, to match the signal level with the full scale
out put [evel of the DAC. For full-scale sinusoidal signals the SNR can be
reduced to (5),

SNR = (6.02B +1.76)dB [8]

Several assunption are made in the follow ng analysis. It is
assuned that the error introduced by anplitude truncation is a stationary
process, the error is uncorrelated with the desired output, and the error

www.spincore.com o5 7/11/2002

PulseBlasterDDS

has a uniformdistribution over the range of quantization error. These
assunptions are not always valid when generating fixed frequency signals,
but the analysis is sinple and yields worst case noise floor performance
of the system As the error becones nore correlated to the desired
signal, spurs will begin to rise out of the noise floor, but the noise
floor will start to drop at the sanme time. The basic tradeoff is that
noi se energy is transferred fromthe broadband noise into spurious noise.
If the spurs produced can be filtered, concentrating noise energy in the
spurs can be beneficial since the filter will renove the spurs and the
noi se fl oor has been reduced.

Sunmmary of Direct Digital Synthesis Waveform Generation

In summary, the FRC is used to latch Pl information and synchronize
it wwth the rest of the DDS. The DDS accunul ates phase to generate
frequencies of interest. Frequency and phase changes are nade by

adj usting the anount of phase accunul ated on each clock cycle. If a
constant Phase Increnent value is left in the Frequency Control Register
the DDS will generate a constant frequency sinusoid. The phase and

frequency resolution of the DDS is dependent upon the size of the digita
word used by the Phase Accumul ator. The LUT uses only the MSB of the
phase accunul ator word to generate anplitude val ues corresponding to
speci fic phase values. The output of the LUT is sent to a DAC. The DAC
translates the digital word at its inputs to an analog value at its
output. The output of the DAC has a step-like response that the
Interpolation Filter will “smpoth out”. G ven the proper design

consi derations, the output of the Interpolation Filter will be an
excel l ent representation of the desired signal of interest.

2. PulseBlasterDDS Specifics

This chip has four frequency registers with each register 32 bits wi de.
The frequency register to use is controlled by control |ine generated by
t he Pul seBl aster PP core.

3. Calculating DDS Frequency

The cal cul ati on of the frequency word for the DDS units is relatively
straight forward

DDS frequency word (32 bits) = Desired Freq (in Miz) * 2732

Clock Freq (in MHz)
The cal cul at ed val ue above can be used when programing the DDS units.

The frequency resol ution of the default design is:
50e6 /2732 =0.012 Hz

www.spincore.com 26 7/11/2002

PulseBlasterDDS

Appendix I: Programming Notes

Programm ng Notes for Pul seBl asterDDS U tra:

There are two nmet hods of programm ng the Pul seBl ast er DDS
Utra. You can either use the included C functions to create
the program for you by putting your pulse programin echo2.c
and reconpiling it, or you can generate the appropriate
outputs directly to the device using the _outp conmand.

Method |. Using C functions

In order to programthe board using a ¢ program you nust
first initialize the board by using the follow ng functions.
Al'l of these steps are taken in the main routine of echo2.c.
You can repl ace the pul se sequence lines in echo2.c to skip
all of the initialization steps.

voi d* grab_i mage_nenory(Ul NT32 | engt h)
Used to all ocate nmenory on the PC equal to the size of
the nenory on the Pul seBl asterDDS. The nenory on the PC
will be programmed fully before being downl oaded to the
Pul seBl ast er DDS.
| ength — Al ways use | NTERNAL_MEMORY
DDS Unit* grab_dds_nenory(void);

Used to allocate nmenory for the progranmm ng of the DDS
regi sters.

HW Paraneters I nit H\ U NT16 nmyPort, fl oat
cl ock_frequency, U NT32 nenory_type);

Initializes hardware specific variables for the
programi ng of the Pul seBl ast er DDS

nyPort — the base port address (e.g. 0x340)

cl ock_frequency — the clock frequency of the
Pul seBl asterDDS in MHz

www.spincore.com 27 7/11/2002

PulseBlasterDDS
menory_type — Always use | NTERNAL_MEMORY

After initializing the hardware specific variables, you nust
then set the initial values of the TTL outputs and the val ues
of the frequency registers.

| NT8 program dds(UI NT8 dds, U NT8 reg, double frequency,
DDS Unit *dds_array);

Used to specify the values of each of the four frequency
regi sters.

dds — specifies which dds unit you would like to
program (Al ways set to 1)

reg - specifies which frequency register you would
|ike to program (Valid range of values is 0-3)

frequency — specifies frequency you wi sh to program
the register with (in Miz)

*dds_array — variable of type DDS Unit to hold the
information until it is to be witten to the board.
(Shoul d be the sanme variable returned from
grab_dds_nenory)

void program.initial _flag_values(U NT32 flags);
Used to set the initial state of the TTL outputs.
flags — hol ds hex value of information to be output

to the TTL outputs (only bits 9..0 are valid
out put s)

After initializing the flags and frequency regi sters, you then
need to generate your pulse program This can be acconplished
by using the follow ng sequence of commands.

out put _control _word = FREQD | TX DDS GATE OFF
RX_DDS_GATE_OFF | OxFFFF;

www.spincore.com o8 7/11/2002

PulseBlasterDDS

The first part of the output control word is used to
specify the frequency to be used. Valid values are
FREQD, FREQL, FREQ@, and FRE

The second part specifies whether the first DAC output is
on or off. Valid values are TX DDS GATE OFF and
TX _DDS_GATE_ON

The third part specifies whether the second DAC output is
on or off. Valid values are RX DDS GATE OFF and
RX_DDS_GATE_ON

The fourth part of the control word specifies what the
TTL outputs should read during this pulse (Only bits 9..0
are valid)

Once the output control word has been generated, you nust cal
a function that uses this information to generate the actual
80-bit instruction word.

ADDRESS del ay(doubl e tinme, U NT32 flags, Instruction_Unit
*i mage) ;

Used to generate the specified pulse for the specified
anount of time. By calling this function the instruction
is automatically added to the copy of the internal nenory
pointed to by the *inmage vari abl e.

time — length of pulse (in ns)

flags — this should be output _control _word as generated
above

*image — this should be the variable returned from
grab_i mage_nenory;

These vari abl es have the same neaning for each of
t he program functi ons;

ADDRESS st op(double tinme, U NT32 flags, Instruction_Unit
*i mage) ;

St ops execution of pulse program

ADDRESS | oop(doubl e tinme, U NT32 | oop_count, U NT32
flags, Instruction_Unit *inage)

www.spincore.com 29 7/11/2002

PulseBlasterDDS

Begi nning of a |l oop. Loops this portion of the
program for | oop_count tines

ADDRESS end_| oop(doubl e time, U NT32 top_of | oop, U NT32
flags, Instruction_Unit *inmage)

End of a loop. Returns to comrand specified by
top_of | oop.

ADDRESS j unp(doubl e tinme, U NT32 next addr, U NT32 flags,
Instruction_Unit *inage)

Junps to a subroutine whose address is specified by
next _addr

ADDRESS rts(double tinme, U NI32 flags, Instruction_Unit
*i mage)

Returns from a subroutine

ADDRESS branch(doubl e tinme, U NT32 next _addr, Ul NT32
flags, Instruction_Unit *inmage)

Uncondi tional ly branches to next_addr
After creation of the pul se program you mnmust create the text
file containing the programring information. The file will be
used when actually programm ng the board.
| NT16 create_bytecode file_dds(lInstruction_Unit *inage,

U NT32 i mage_size, DDS Unit *dds, char *nane,
HW Par aneters hw);

*image — Menory inmage returned from grab_i mage_nenory.
i mge_si ze — al ways use | NTERNAL_NMEMORY
*dds — DDS i nage returned from grab_dds_nenory.
*nanme — nane of text file to be created
hw — use variable returned by InitHW
After witing all relevant infornmation to a file, call the

followi ng function to programthe Pul seBl asterDDS fromthis
file.

www.spincore.com 30 7/11/2002

PulseBlasterDDS

| NT16 program pul sebl aster(char *nane);

*nane — nane of the text file as specified in
create_bytecode file_dds() function

Once the board has been programed, call start_pb() when you
are ready for the pulse programto run.

Gt her useful functions are |isted bel ow
voi d reset pb(U NT16 port);
Used to stop the execution of the pul se program
void restart_pb(U NT16 port);

Used to restart execution of the pulse programafter a stop
order has been issued.

www.spincore.com 31 7/11/2002

PulseBlasterDDS

Method I1. Witing directly to the output port

The following is an exanple of the output sequence to program
t he Pul seBl aster DDS board. Explanations are included in
brackets in the mddl e of the code.

[Initialization:]

Qut put "0x00" to port base + O (Issue device reset)

Qut put "0x04" to port base + 2 (Select nunber of bytes per
wor d)

Qut put "OxXFF" to port base + 3 (Select device to program (Fl ag
initial values))

Qut put "0x00" to port base + 4 (Reset address counter)

[Set initial flag val ues]
[value for this exanple are "0x00aaf Of 0"]

Qut put "0Ox00" to port base + 6 (Data transfer)
Qut put "OxAA" to port base + 6 (Data transfer)
Qut put "OxFO" to port base + 6 (Data transfer)
Qut put "OxFO" to port base + 6 (Data transfer)
Qut put "O0x00" to port base + 5 (O ock data into externa

buffer)
Qut put "O0x00" to port base + 5 (Return clock signal to | ow)

[Set up DDS frequency registers]

Qut put "O0x00" to port base + O (Issue device reset)

Qut put "0x04" to port base + 2 (Select nunber of bytes per
wor d)

Qut put "O0x01" to port base + 3 (Select device to program (DDS
Frequency Registers))

Qut put "O0x00" to port base + 4 (Reset address counter)

DDS Regi ster Val ues]

[

[Reg0 = 051EB852 (1 Miz)]
[Regl = OA3D70A4 (2 Miz)]
[Reg2 = OF5C28F6 (3 Miz)]
[Reg3 = 147AE148 (4 Miz)]

[Fornmula for finding these val ues: |
[REQD = DESI RED_FREQUENCY * 232 / PBDDS_CLOCK]
[=1 Mz * 2%/ 50 MHz = 858993459.2 = 0x051EB852]

www.spincore.com 32 7/11/2002

PulseBlasterDDS

Qut put "O0x05" to port base + 6 (Data Transfer - Byte 3 of
RegO0)
Qut put "Ox1E" to port base + 6 (Data Transfer - Byte 2 of
RegO0)
Qut put "OxB8" to port base + 6 (Data Transfer - Byte 1 of
RegO0)
Qut put "0x52" to port base + 6 (Data Transfer - Byte 0 of
RegO0)

Qut put "O0x05" to port base + 6 (Data Transfer - Byte 3 of
Regl)
Qut put "Ox3D' to port base + 6 (Data Transfer - Byte 2 of
Regl)
Qut put "O0x70" to port base + 6 (Data Transfer - Byte 1 of
Reg1l)
Qut put "OxA4" to port base + 6 (Data Transfer - Byte 0 of
Reg1l)

Qut put "OxOF" to port base + 6 (Data Transfer - Byte 3 of
Reg?2)
Qut put "Ox5C' to port base + 6 (Data Transfer - Byte 2 of
Reg2)
Qut put "0x28" to port base + 6 (Data Transfer - Byte 1 of
Reg2)
Qut put "OxF6" to port base + 6 (Data Transfer - Byte 0 of
Reg?2)

Qut put "0x14" to port base + 6 (Data Transfer - Byte 3 of
Reg3)
Qut put "Ox7A" to port base + 6 (Data Transfer - Byte 2 of
Reg3)
Qut put "OxXE1l" to port base + 6 (Data Transfer - Byte 1 of
Reg3)
Qut put "0x48" to port base + 6 (Data Transfer - Byte 0 of
Reg3)

[Pul se Program Setup]

Qut put "O0x00" to port base + O (Issue Device Reset)

Qut put "OxO0A" to port base + 2 (Select nunber of bytes per
wor d)

Qut put "0x00" to port base + 3 (Select device to program
(RAM)

Qut put "O0x00" to port base + 4 (Reset address counter)

www.spincore.com 33 7/11/2002

PulseBlasterDDS

Qut put "0x18" to port base + 6 (Byte 9 of first instruction)
Qut put "OxFF" to port base + 6 (Byte 8 of first instruction)
Qut put "OxFF" to port base + 6 (Byte 7 of first instruction)
Qut put "O0x00" to port base + 6 (Byte 6 of first instruction)
Qut put "O0x00" to port base + 6 (Byte 5 of first instruction)
Qut put "O0x00" to port base + 6 (Byte 4 of first instruction)
Qut put "O0x00" to port base + 6 (Byte 3 of first instruction)
Qut put "O0x00" to port base + 6 (Byte 2 of first instruction)
Qut put "0x00" to port base + 6 (Byte 1 of first instruction)
Qut put "O0x07" to port base + 6 (Byte O of first instruction)

Qut put "OxXX" to port base + 6 (Byte 9 of second instruction)

[Continue this process for all instructions. The
expl anation of]

[howto create the 80 bit instruction words is included

bel ow.]

[When finished with all instructions, continue wth the

sequence |

[bel ow.]

Qut put "0x00" to port base + 7 (Progranm ng Fini shed)

[Only execute the follow ng conmand when you are ready for
the]
[programto start running.]

Qut put "O0x00" to port base + 1 (Start pul se program
Breakdown of 80 bit instruction word

Instruction Bits 79...0 are broken up into 4 sections
Qut put Pattern - 24 bits (Instruction Bits 79..56)
Data Field - 20 bits (Instruction Bits 55..36)

OP Code - 4 bits -(Instruction Bits 35..32)
Del ay Count - 32 bits - (Instruction Bits 31..0)

aRwd

Qut put Pattern:

Instruction |Function
Bit #

79|Selects one of four frequency registers (MSh)
78|Selects one of four frequency registers (LSb)
77|None

76| Turns on/off output of DDS #1

75|Turns on/off output of DDS #2

www.spincore.com 34 7/11/2002

74

None

73

None

72

None

71

None

70

None

69

None

68

None

67

None

66

None

65

Output Connector DB25 pin 19

64

Output Connector DB25 pin 7

63

Output Connector DB25 pin 8

62

Output Connector DB25 pin 21

61

Output Connector DB25 pin 22

60

Output Connector DB25 pin 10

59

Output Connector DB25 pin 11

58

Output Connector DB25 pin 24

57

Output Connector DB25 pin 25

56

Output Connector DB25 pin 13

PulseBlasterDDS

Data Field (Bits 55 — 36) and Op Code (Bits 35 — 32):
The data field' s function is dependent on the OpCode.

OpCode # |OpCode Meaning Data Field used for
0|Continue Ignored
1/Stop Ignored
2|Loop Number of desired Loops - 1
3|End Loop Address of Instruction originating loop
4|Jump to Subroutine Address of first subroutine instruction
5|Return From Subroutine (lgnored
6|Branch Address of next instruction
7|Long Delay Number of desired loops - 2
8|Wait Ignored
Del ay Count:

How | ong the current

instruction should be executed.
smal | est possible delay is 6 clock cycles (120ns).

formula for determning its value is bel ow

The
The

DELAY _VALUE = (Desired Delay (ns) — 60 ns) / 20 ns

Ex. for

del ay of 1000 ns

www.spincore.com

(1000ns — 60ns) / 20ns = 940ns / 20ns
47
Ox2F

35

7/11/2002

PulseBlasterDDS

Appendix II: Sample C program
(echo2.c)

#i ncl ude<stdi 0. h>
#i ncl ude<stdl i b. h>
#i ncl ude<string. h>
#i ncl ude<coni o. h>
#i ncl ude<mat h. h>

#i ncl ude<mal | oc. h>

#i ncl ude "spincore. h"

/* SPI NCORE TECHNOLOG ES, | NC
GAl NESVI LLE, FL

VWV, Spl ncore. com

This file is being distributed as comunity software free
of charge. SpinCore

Technol ogi es, Inc retains ownership of the software but
does not neke any

clainms as to its functionaliy or warranty it in any way.
Any nodi fications

to this code nust be provide to SpinCore along with a
description of what

was changed as well as the notivation behind the changes.
The nodi fications

www.spincore.com 36 7/11/2002

PulseBlasterDDS

will be reviewed by SpinCore and nade availible to others
if the changes are

deened positive by SpinCore.

This is an beta rel ease of code. As such

there may be bugs in the code. */

/1 MAIN PROGRAM //
void main(int argc, char *argv[])
{

U NT16 port_addr = 0x340;

U NT32 tenp;

U NT32 out put _control _word,;

| NT16 tenp2,

I nstruction_Unit *program

DDS Unit *dds;

HW Par anet ers hw_spec;

ADDRESS addr ess;

U NT8 unit, reg, i, j, *dds_word;

doubl e freq;

if(argc !'=1 && argc != 2)

{
printf("\nCommand |ine ERROR \n");

www.spincore.com 37 7/11/2002

PulseBlasterDDS

printf("Command |ine usage is \"driver filenane\"\n");

exit(0);

if(argc == 2)

if(strcnp(argv[1],"-stop”)==0){ /* conmand line option to
i ssue stop */

reset pb(port_addr); /* reset command to the NWMR
Controller */

printf("\nStop Command has been issued to NWR
Controller.\n");

exit(0);

if(strcnp(argv[1l],"-start")==0){ /* conmand line option to
i ssue start */

arm pb(port _addr);

start_pb(port_addr); /* start command to the
NMR Controller */

printf("\nStart Conmand has been issued to NWMR
Controller.\n");

exit(0);

/* Initialize Code */
program = grab_i nage_nenor y(| NTERNAL_MEMORY) ;

dds = grab_dds_nenory();

www.spincore.com 38 7/11/2002

PulseBlasterDDS

hw_spec = I nit H\ port _addr, 50, | NTERNAL_NMEMORY) ;

/* Program DDS frequency registers */
programdds(1, 0, 1, dds);
programdds(1, 1, 2, dds);
programdds(1, 2, 3, dds);

program dds(1, 3, 4, dds);
programinitial flag_val ues(0x00AAFOFO) ;

/* Create program for Pul se Programer Core;
Label definitions are in spincore.h
(you may define your own | abels as well)

*/

/1 begin your program here

out put _control _word = PHASEL | FREQD | TX DDS GATE OFF |
RX_DDS_GATE_OFF | OxFFFF;

address = del ay(0.2*us, output_control _word, program; [/
synchroni zation state

out put _control _word = PHASEL | FREQD | TX DDS_GATE ON |
RX _DDS GATE _ON | 0x0000;

address = del ay(5*us, output_control _word, program; [/ first
pul se

out put _control _word = PHASEL | FREQD | TX DDS GATE OFF |
RX_DDS_GATE_OFF | 0x0000;

address = del ay(100*us, output_control _word, program; [/
first del ay

www.spincore.com 39 7/11/2002

PulseBlasterDDS

out put _control _word = PHASEL | FREQL | TX DDS GATE ON
RX DDS GATE ON | 0x0000;

address = del ay(2.5*us, output_control _word, program; [/
second pul se

out put _control _word = PHASEL | FREQL | TX DDS GATE OFF |
RX_DDS_GATE_OFF | 0x0000;

address = del ay(100*us, output_control _word, program; [/
second del ay

out put _control _word = PHASEL | FREQ2 | TX DDS GATE ON |
RX_DDS_GATE_ON | 0x0000;

address = del ay(1.5*us, output_control _word, program; [/
third pul se

out put _control _word = PHASEL | FREQ2 | TX DDS GATE OFF
RX_DDS_GATE_COFF | 0x0000;

address = del ay(100*us, output_control _word, program; [/
third del ay

out put _control _word = PHASEL | FREQB | TX DDS_GATE ON |
RX DDS GATE _ON | 0x0000;

address = del ay(1.25*us, output_control _word, program; [/
fourth pul se

out put _control _word = PHASEO | FREQD | TX DDS GATE OFF |
RX_DDS_GATE_OFF | 0x0000;

address = branch(1. 6*ns, 0, out put _control _word, progran;
[lrepetition delay, |oops back)

out put _control _word = PHASE2 | FREQB | TX DDS_GATE OFF |
RX_DDS_GATE_OFF | OxFFFF;

address = stop(500*ns, out put_control _word, program; //

never executed, if all OK

/* Create file to be used by driver function */

www.spincore.com 40 7/11/2002

PulseBlasterDDS

[* This file can be very useful in debugging errors since
it allows

the progranmer to see what is actually being programed
to the

board. */

if (argc == 1)
{
tenp2 = create_bytecode_fil e _dds(program address, dds,

DEFAULT_OUTPUT_FI LE, hw_spec);
}

el se

{

tenp2 = create_bytecode file _dds(program address, dds,
argv[1], hw_spec);

if(temp2 '= 0){

printf("Error create bytecode file, error code
%\ n", tenp2);

exit(1):

[* Program Pul seBl ast er/ Pul seBl ast er DDS series board with
info

contained in file created by function
create_bytecode file */

if (argc == 1)

{
tenp2 = program pul sebl ast er (DEFAULT_OUTPUT_FI LE)
}
el se
{
tenp2 = program pul sebl aster(argv[1]);
}

if(tenmp2 '= 0){

www.spincore.com 41 7/11/2002

PulseBlasterDDS

printf("Error progranm ng board, error code %\ n",tenp2);

exit(1):

/[* start execution of program */

start _pb(port_addr); /[* command to start
Pul seBl aster */

}

www.spincore.com 42 7/11/2002

	Complete Digital Excitation System:
	Direct Digital Synthesis (DDS),
	Arbitrary Waveforms, and TTL
	Block diagram
	Output signals
	Timing characteristics
	Instruction set
	Function
	
	
	External triggering
	Summary
	
	ISA Bus Controller

	Direct Digital Synthesizer (DDS) Architecture
	
	
	Reconstruction (Interpolation) Filter

	Sources of Error in Waveform Generation

