
Owner’s Manual for the

PulseBlasterDDS Ultra™
Complete Digital Excitation System:

Direct Digital Synthesis (DDS),

Arbitrary Waveforms, and TTL

SpinCore Technologies, Inc.
3525 NW 67th Avenue

Gainesville, Florida 32653, USA
Phone: (352)-271-7383

http://www.spincore.com

1

Congratulations and THANK YOU for choosing a design from
SpinCore Technologies, Inc. We appreciate your business. At
SpinCore we try to fully support the needs of our customers, so if you
ever need assistance please contact us and we will strive to provide the
necessary help.

© 2000-2002 SpinCore Technologies, Inc. All rights reserved. SpinCore
Technologies, Inc. reserves the right to make changes to the product(s)
or information herein without notice. PulseBlasterDDS™, PulseBlaster™,
SpinCore, and the SpinCore Technologies, Inc. logo are trademarks of
SpinCore Technologies, Inc. All other trademarks are the property of
their respective owners.

SpinCore Technologies, Inc. makes every effort to verify the correct
operation of the equipment. This equipment should NOT, however, be
used in system where the failure of a SpinCore device will cause
serious damage to other equipment or harm to a person

2

Contents

Section I: Introduction
 1 Quick Product Overview
 2 Quick Installation Guide

Section II: PulseBlaster Core Design
 1 Design Overview
 2 Machine Language
 3 Control Commands
 4 Board Initialization
 5 ISA Bus Programming Issues
 6 Header/Jumper Information

Section III: DDS Basics
 1 General Description
 2 Calculating Frequency

Appendix I
 Programming Notes

Appendix II
 Sample C program (echo2.c)

4
6

7
10
14
16
17
19

28

37

3

1. Quick Product Overview

The PulseBlasterDDS(tm) series of Intelligent Pattern and Waveform
Generation boards from SpinCore Technologies, Inc., couples SpinCore’s
unique Intelligent Pattern Generation processor core, dubbed
PulseBlaster(tm), with Direct Digital Synthesis (DDS) AND Arbitrary
Waveform Generation (AWG) technology for use in system control and
waveform generation.

The PulseBlaster’s(tm) state-of-the-art timing processor core,
implemented in programmable logic, provides all the necessary timing
control signals required for overall system control and waveform
synchronization. By adding DDS and arbitrary waveform generation
features, PulseBlasterDDS(tm) can now provide not only digital (TTL)
but also analog output signals, meeting high-performance and high-
precision complex excitation/stimuli needs of demanding users.

PulseBlasterDDS(tm) provides users the ability to control their
systems through the generation of fully synchronized (digital and
analog) excitation waveforms from a small form factor PC board,
providing users a compelling price/performance proposition unmatched by
any other device on the market today. Figure 1 presents sample
capabilities of the board.

Section I: Introduction

Figure 1. Sample PulseBlasterDDS(tm) output capabilities

4

2. Board Architecture

Block diagram

 Figure 2 presents the general architecture of the PulseBlasterDDS(tm)
board. The DDS, Modulator (optional), Pulse Timing and Gating cores
have been integrated onto a single silicon chip. The internal DDS core
has four frequency registers that are under the pulse program control.
Prior to gating, the internal DDS signal can be amplitude-modulated
with arbitrary waveforms (up to 32k samples) stored on on-board memory,
also under pulse program control. Optionally, PulseBlasterDDS(tm)
boards can be equipped with two independent off-chip DDS generators.

Fig. 2. PulseBlasterDDS(tm) board architecture.

• PulseBlasterDDS Ultra does not support Amplitude Control or external
DDS chips

5

Output signals

 This exciting product comes with up to two analog output channels
that can be configured to output radio-frequency (RF/IF) waveforms,
arbitrary waveforms, or a combination of both, and up to 10 digital
output signal lines. The frequency and phase of the RF waveforms
generated by the DDS output channels are under the complete control of
the user and are specified through software programming. The arbitrary
waveform patterns are also under the control of the user and are stored
in on-board memory. PulseBlasterDDS(tm) also provides the ability to
gate the output of the DDS channels allowing for independent pulsed RF
operation of all output channels. With digital sampling rate of 100 MHz
(max. clock frequency, internal DDS core only), analog signals up to
approx. 50 MHz can be generated. Both analog output signals are
available on on-board SMA connectors. The output impedance of the
analog signals is 50 ohms.

The individually controlled digital (TTL/CMOS) output bits are capable
of delivering +-25 mA per bit. Twenty-four of the output lines can be
set to either the 5 V or 3.3V I/O TTL logic standard. Up to 16 digital
TTL output lines are available on the PC bracket-mounted DB-25
connector; the remaining TTL signals are available on internal, flat-
cable headers. The actual number of the available output bits depends
on the model of PulseBlasterDDS(TM) board/design.

Timing characteristics

 PulseBlasterDDS™’ timing controller can accept either an internal
(on-board) crystal oscillator or an external frequency source of up to
100 MHz. The innovative architecture of the timing controller allows
the processing of either simple timing instructions (delays of up to
4,294,967,296 clock cycles), or double-length timing instructions (up
to 2^52 clock cycles long - nearly 2 years with a 100 MHz clock!).
Regardless of the type of timing instruction, the timing resolution
remains constant for any delay – just one clock period (e.g., 10 ns for
a 100 MHz clock, or 100 ns for a 10 MHz clock).

The core timing controller has a very short minimum delay cycle – only
five clock periods for internal memory (512 words) models. This
translates to a 50 ns pulse/delay/update with a 100 MHz clock. The
external memory models (up to 32k words) have a nine-clock period
minimum instruction cycle.

Instruction set

 PulseBlasterDDS™’ design features a set of commands for highly
flexible program flow control. The micro-programmed controller allows
for programs to include branches, subroutines, and loops at up to 16
nested levels – all this to assist the user in creating dense pulse
programs that cycle through repetitious events, especially useful in
numerous multidimensional spectroscopy and imaging applications.

6

For detailed description of the instruction set and programming,
please consult the PulseBlaster’s Owner Manual, available on SpinCore’s
web site (http://www.spincore.com/support).

Programming architecture and word definition
 The PulseBlaster™ processor implements an 80 bit wide Very-Long
Instruction Word (VLIW) architecture. The VLIW memory words have
specific bits/fields dedicated to specific purposes, and every word
should be viewed as a single instruction of the micro-controller. The
maximum number of instructions that can be accommodated on on-board
memory is 32k. The execution time of instructions can be varied and is
under (self) control by one of the fields of the instruction word. All
instructions have the same format and bit length, and all bit fields
have to be filled. Figure 3 shows the fields and bit definitions of
the 80-bit instruction word.

Bit Definitions for the 80-bit Very-Long Instruction Word (VLIW)
--

 Output Pattern:79-56 | Data Field:55-36 | OP Code:35-32 | Delay Count:31-0

 (24 bits) (20 bits) (4 bits) (32 bits)

Figure 3. Bit definitions of the VLIW instruction/memory word.

Several bits of the output pattern are dedicated to selecting the
available frequency/phase registers and gating the RF/AWG signals, and
are design/model specific. For example, for the design featuring a
single internal DDS generator and two independently gated outputs
(denoted, for convenience, TxDDS and RxDDS), the bit assignment is as
follows:

Bit # (out of 24 bit of output

pattern word)

Function

1 Bit # 0 Output Connector DB25, pin # 13

2 Bit # 1 Output Connector DB25, pin # 25

3 Bit # 2 Output Connector DB25, pin # 24

4 Bit # 3 Output Connector DB25, pin # 11

5 Bit # 4 Output Connector DB25, pin # 10

6 Bit # 5 Output Connector DB25, pin # 22

7

7 Bit # 6 Output Connector DB25, pin # 21

8 Bit # 7 Output Connector DB25, pin # 8

9 Bit # 8 Output Connector DB25, pin # 7

10 Bit # 9 Output Connector DB25, pin # 19

11 Bit # 10 Output Connector DB25, pin # 18

12 Bit # 11 Unavailable

13 Bit # 12 Unavailable

14 Bit # 13 Unavailable

15 Bit # 14 Unavailable

16 Bit # 15 Unavailable

17 Bit # 16 Unavailable

18 Bit # 17 Unavailable

19 Bit # 18 Unavailable

20 Bit # 19 Controls RxDDS Gate (0 = On, 1 = Off)

21 Bit # 20 Controls TxDDS Gate (0 = On, 1 = Off)

22 Bit # 21 Unavailable

23 Bit # 22 Frequency Select Bit 0

24 Bit # 23 Frequency Select Bit 1

For models featuring the internal modulator (AWG), the instruction
word is 96 bit wide, and the additional bit-field codes for the signal
amplitude of the analog output. Every word can have different signal
amplitude, and words can be updated every nine clock cycles (for 32k
memory word models).

Using the provided C functions, programming of the board can be
accomplished by using calls to functions of the general form
(delay, output control word).

Example:

output_control_word = FREQ0 | TX_DDS_GATE_ON | RX_DDS_GATE_OFF | 0xFFFF;
address = delay(1*us,output_control_word,program); //a 1 us interval in pulse sequence

output_control_word = FREQ3 | TX_DDS_GATE_OFF | RX_DDS_GATE_OFF | 0x0000;
address = delay(2*us, output_control_word,program); //a 2 us interval in pulse sequence

Please consult the provided Appendix for more information on
programming the PulseBlasterDDS Ultra.

8

Programming of DDS registers

 The registers of the internal DDS core(s) are programmed directly
over the system bus. The following is an example use of the C function
that was developed at SpinCore to aid in programming the available DDS
registers:

/* Program DDS internal frequency registers */
 program_dds(1, 0, 6.25, dds);
 program_dds(1, 1, 0.1, dds);

In the above example, two different frequency registers (0 and 1) of
the internal DDS core (#1) are loaded with two different frequency
values, 6.25 MHz and 0.1 MHz.

For details on programming the DDS section of the board, please consult
the appendix.

External triggering

 PulseBlasterDDS™ can be triggered and/or reset externally via
dedicated hardware lines. The two separate lines combine the
convenience of triggering (e.g., in cardiac gating) with the safety of
the "stop/reset" line. The required control signals are “active low”
(or short to ground).

Summary

 PulseBlasterDDS™ is a versatile, high-performance pulse/pattern TTL
and RF/IF/AWG generator operating at speeds of up to 100 MHz and
capable of generating pulses/delays/intervals ranging from 50 ns to
over 2 years per instruction. It can accommodate pulse programs with
highly flexible control commands of up to 32k program words. Its high-
current output logic bits are independently controlled and some bits
are 5/3.3 V user-selectable. Up to four analog channels (50 ohm
impedance) are available from a single board.

9

2. Quick Installation Guide
PulseBlasterDDS™ boards are ready to use out of the box. After

unpacking, they can be installed on your computer in any available ISA
slot. Please shut down your computer and turn the power off when
installing the board, and use a screw to fasten the bracket.

PulseBlasterDDS™ boards are factory pre-configured to operate with the
following default settings:

ISA Base Address: 0x340.
 Clock Oscillator: Internal, installed on board; clock frequency as

per customer specification
Output levels: TTL 3.3 V

These settings can be changed using on-board jumpers. Please consult
Chapter 6 in Section II for details regarding the jumpers’ information
and location.

The board can be used on computers running any operating system that
supports the Industry Standard Architecture (ISA) bus, including DOS,
Windows, QNX, and Linux. Third party drivers are available for
protected operating systems (Win2000 and WinNT). Section III of this
manual, “Test and Application Programs,” describes sample programs that
can be used to program the board for operation under Microsoft
DOS/Windows95 operating systems. The C code described in this manual
can also be compiled under most other operating systems as well.
SpinCore’s web site http://www.spincore.com/support serves as a repository of
the software described in this manual.

http://www.spincore.com/support

10

2. PulseBlasterDDS™ Specific
Information on C and Machine
Language programming.

WE for Peripherals: This register is used to select the peripheral
that is to be programmed. The value of this register that is used to
select program memory is always zero and this is the default value for
the register. A complete listing of the values and the associated
hardware that can be programmed when appropriately set.

WE Register Value (hex)
Program Memory 0
Integrated DDS 1 1
Table 3: Peripheral List

CLEAR ADDRESS COUNTER: The Address Counter is used to manufacture the
memory address. The Address Counter is not loadable; it can only be
cleared and started at zero. It is not possible to load a particular
section of memory. All loads must start from either the beginning of
memory, or wherever the Address Counter left off.

 Flag Initialization Strobe: The output flags of the PulseBlasterDDS
can be programmed while the device is in a reset state. This is useful
to initialize flags after powering-up and to reset flags to a known
state if a program must be aborted. Writing to the Flag Initialization
Strobe register will toggle the line used to clock data into the output
latches. Appendix B provide more information on how to use the Flag
Initialization Strobe to program the output flags while the
PulseBlasterDDS is in a reset state.

Section II: PulseBlasterDDS™ Design

11

LOAD_MEMORY: This instruction is used to specify data that should be
used to program the memory used by the device. Since the ISA data is
taken only one byte at a time, the IBC must reconstruct the data word
to be programmed. The data word is reconstructed in the IBC most
significant byte first.

PROGRAMMING FINISHED: This instruction enables the pattern generator
of the PulseBlaster™. This instruction prevents the pattern generator
from accepting a hardware trigger or software start command before the
device has been programmed. Once the design has been programmed, the
PROGRAMMING FINISIHED command must be sent to arm the device for
operation. After the pattern generator has been armed, any hardware
trigger or software start command will cause the system to start
operation. The PulseBlaster™ can be reset by issuing the DEVICE_RESET
command. This will internally clear the PROGRAMMING FINISHED
instruction and prevent the pattern generator from operating again
until the IBC has been re-initialized.

12

4. ISA Readback Features
PulseBlaster products have the ability to provide status information to
the user through a group of registers that are readable through the ISA
Bus. The registers provide information on the status of the
PulseBlaster series device as well as the firmware version number.

The register numbers provided below are offsets from the ISA port base
address assigned to the PulseBlaster series card. All registers are 8
bits and are read only. If the users attempts to write to the port
address associated with one of the registers, it will overwrite data in
one of the IBC (ISA Bus Controller) control registers.

Only Register 0 and Register 1 are guaranteed to remain the same in
future releases.

Register Definitions

Register 0 – Control Signal Register

Bit 7: Reserved (Testing := Memory_Mode)
Bit 6: IBC_Error – indicates if there has been an error programming

the IBC
Bit 5: Programming_Finished – indicates that the PulseBlaster series

device has been programmed and is armed. The next trigger
(either Hardware or Software) will start execution of the
pulse programmer code.

Bit 4: Idle -
Bit 3: Waiting – The PulseBlaster series device has encountered a

WAIT Op Code and is currently waiting for the next trigger
(either Hardware or Software) to resume operation.

Bit 2: Running – indicates that the PulseBlaster series device is
current executing a program.

Bit 1: Reset – the PulseBlaster series device is in a RESET state
and must be reprogrammed before code execution can begin
again.

Bit 0: Stop – indicates that the PulseBlaster series device has
encountered a STOP Op Code during program execution and has
entered a stopped state.

Register 1 – Version Control Register

Bits[7..4]: Product Type Number
PulseBlaster (external memory) = 0
PulseBlaster (internal memory) = 1
PulseBlasterDDS (PP only external memory) = 2
PulseBlasterDDS (PP only internal memory) = 3
PulseBlasterDDS (single channel DDS) = 4
PulseBlasterDDS (dual channel integrated DDS) = 5
PulseBlasterDDS (2 integrated, 2 external DDS) = 6
PulseBlasterDDS (2 AWG, 2 DDS) = 7

Bits[3..0]: Release Version Number

13

Register 2 – Pulse Programmer Core Address LSB’s

Bits[7..0] : PP Core Current_Address[7..0]

Register 3 – Pulse Programmer Core Address MSB’s

Bits[7..0]: PP Core Current_Address[15..8]

Register 4 – PP Core Delay Counter Value (LSB)

Bits[7..0]: PP Core Delay_Count[7..0]

Register 5 - PP Core Delay Counter Value (MSB)

Bits[7..0]: PP Core Delay_Count[31..24]

Register 6

Bits[7]: PP Core Loop_Done
Bits[6..4]: PP Core Control_Mux[2..0]
Bits[3..0]: PP Core Control_Codes[3..0]

Register 7

Bits[7..0]: PP Core Branch_Address[7..0]

14

5. PulseBlaster™ Board Initialization

Initialization of the PulseBlasterDDS™ Board for operation involves a
minimum of four steps. The steps are as follows:

1) Send LOAD NUMBER OF BYTES PER WORD instruction.
2) Send SELECT PERIPHERAL DEVICE instruction.
3) Send CLEAR ADDRESS COUNTER instruction.

3.A. (Optional) loading data to memory.
4) Send PROGRAMMING FINISHED instruction.

If these four commands are not sent from a PC, the PulseBlasterDDS™
board will not run as desired. All four instructions are required as
an attempt to ensure that the device has been programmed before it can
be armed. The first time the board is used, the loading of the memory
with data has to be performed between steps three and four, step 3.A
above. Upon reset, all four instructions must be executed to restart
the device again.

A Sample C code that implements the above commands is presented in the
appendix.

15

5. ISA Bus Programming Issues

In order for the embedded intelligent pattern generator to operate,
the memory it utilizes needs to be programmed, and appropriate control
bytes have to be sent over the ISA Bus. To accomplish these tasks, a
special controller, called IBC (ISA Bus Controller), was designed as
the interface between a PC and the PulseBlaster™ Pulse/Pattern
Generator.

The IBC handles programming the system memory for the pattern
generator, initializes the board, and controls its operation. Once the
system memory has been initialized, the IBC relinquishes control of the
memory’s data and address busses to the pattern generator. While the
pattern generator is running, it has complete control of the memory
buses. The IBC does have the power to reset the pattern generator and
re-take control of the device. This allows for PC software to control
the operation of the PulseBlaster™ Core Processor.

NOTE: The data taken off the ISA Bus is one byte wide - the 16-bit
data capability of the ISA Bus was not used in order to conserve I/O
pins on the microchip. Also, the IBC controller does not have the
ability to write information to the bus. However, if necessary, three
pins on PulseBlaster™’s board, namely RUNNING (J12-10), STOPPED (J12-
7), and SYSTEM_RESET (J12-8) could be used to determine the status of
the uPC.

ISA-Bus Base Port Address
Each device on the ISA Bus is mapped to a port address range. The

port address is used to specify that data on the bus is for a
particular peripheral device. The PulseBlaster™ board design has the
ability to change its port address. This ability provides for the fact
that other devices on the bus might have previously claimed certain
port address ranges. Three control lines, running to the J4 header on
the PulseBlaster™ card, allow one of eight port address ranges to be
selected. The port address ranges are from the ‘Base Address’ to the
‘Base Address + 7’. The Base Addresses that can be specified range
from 0x260 to 0x360, see Table 3 in the next chapter “Header/Jumper
Information.”The factory pre-set value is 0x340.

16

ISA Bus Controller
The ISA Bus Controller uses three control signals from the ISA Bus:

AEN, ~IOW, and Bus Clock. The control signals are used to decode the
ISA Bus traffic. The Bus Clock signal is used by the IBC for timing,
and it is completely independent of the system clock of the
PulseBlaster™. The AEN signal is active high and indicates an address
is on the bus, and that the address is from the DMA controller. In
order to avoid traffic from the DMA controller, the IBC looks for this
signal to be low. The ~IOW line specifies that a write (from the PC
processors point of view) is occurring. A write indicates that the
data on the bus is destined for a peripheral device. If both AEN and
~IOW are low, the data on the bus is being written to a peripheral
device specified by the port address on the ISA Bus. The details of
this hardware communication are hidden from the user standpoint if one
uses the C language functions outp() or _outp().

Sending Control Commands over the ISA Bus
Once the on-chip ISA Bus Controller, IBC, finds the correct values for

AEN and ~IOW, the address and data values are latched into control
registers. The address is then decoded to determine if the bus traffic
is addressed to the PulseBlaster™. If the address is in the defined
range for the PulseBlaster™, then the address is used as a Control
Command to drive the operation of the IBC. The IBC has eight distinct
Control Commands - see Table 2. The Control Command values are
specified in offsets from the Base Address. If the Control Command has
data associated with it, the data latched off the ISA Bus is used; else
the data buffer register is ignored.

17

6. Header/Jumper Information

The PulseBlasterDDS™ board is a configurable system. It allows the
user to set jumpers on several headers on the PC card to select
different modes of operation for the device.

Selecting ISA Bus Address: Header J4, Pins 1-2, 3-4, and 5-6.
 The Base Addresses that can be specified range from 0x260 to 0x360.
The default, factory pre-set value for the ISA PulseBlaster™ board
is 0x340. This value can be changed, via jumpers on Header J4,
according to the Table 3.

Base Address
(in Hex)

Jumper Settings – Header J4
Pins 5-6 Pins 3-4 Pins 1-2

300 | | |
320 | | :
340 | : |
260 | : :
280 : | |
270 : | :
290 : : |
360 : : :

Table 3. Board’s ISA-Bus Base Address Selection
(Legend: | jumper across pins, : no jumper)

 (Default Value = 0x340, jumpers 1-2, 5-6).

18

 Selecting output voltage levels: Headers JPower1 and Jpower2

The output signals are driven by latches/drivers capable of
running off a 5.0-V or 3.3-V supply. The supply voltage for the
drivers is selectable. Table 4, below, lists the configurations
for 5.0-V and 3.3-V output driver operation.

5 V Operation
Jumper JPower1-1 across to JPower1-2
Jumper JPower2-1 across to JPower2-2

3.3 V Operation
Jumper JPower1-3 across to JPower1-4
Jumper JPower2-3 across to JPower2-4

Table 4. Output voltage selection

The JPower1 header selects the operating voltage for the output
bits 0-15, and JPower2 independently selects the operating voltage
for the output bits 16-23.

 Output Bits - Connector DB-25 (J10) and Header J9

 The following table lists the output bits for the PulseBlaster™
Pulse / Pattern Generator Board.

19

Signal Location
Bit 0 J10-13
Bit 1 J10-25
Bit 2 J10-24
Bit 3 J10-11
Bit 4 J10-10
Bit 5 J10-22
Bit 6 J10-21
Bit 7 J10-8
Bit 8 J10-7
Bit 9 J10-19
Bit 10 J10-18
Bit 11 J10-5
Bit 12 J10-4
Bit 13 J10-16
Bit 14 J10-15
Bit 15 J10-1
Bit 16 J9-3
Bit 17 J9-5
Bit 18 J9-7
Bit 19 J9-9
Bit 20 J9-11
Bit 21 J9-13
Bit 22 J9--15
Bit 23 J9-17
Output Clock J10-1
Running J12-10
Stopped J12-7
System Reset J12-8

Table 5. Output bits and signals of the PulseBlasterDDS™ board.

 Bits 15-0 are grouped on the external DB-25 connector (also marked
as J10) provided for accessing the signals. The rest of the bits, Bits
23-16, are accessible on an internal IDC header J9. The table also
lists several additional output signals that are available to the
outside world, as described in the next subsection. All remaining pins
on the DB-25 and all even pins of J9 connector are connected to the
ground.

20

 Using external trigger/reset lines - Header JTrigger.

 HW_Trigger is a signal that is pulled high by default. When a
falling edge is detected (e.g., when shorting pins 3-4), it
initiates code execution. This trigger will also restart execution
of a program from the beginning of the code if it is detected after
the design has reached an idle state. The idle state could have
been created either by reaching the STOP Op Code of a program, or by
the detection of the HW_Reset signal.

 The HW_Reset line is pulled high by a resistor. It can be used to
halt the execution of a program by pulling it low (e.g., by shorting
pins 5-6). When the signal is pulled low during the execution of a
program, the controller resets itself back to the beginning of the
program. Program execution can be resumed by either a software
start command or by a hardware trigger.

 Additional Output Signals – Connector DB-25 and Header J12.

The internal Output Clock signal is available to the outside
world, as it is tied to the DB25 connector, pin #1. It is the
clock signal used to latch patterns in the output buffers. This
clock has been configured to have a relatively slow slew rate so as
to avoid noise problems on a transmission line. This clock is not
a 50% duty cycle clock. The width of the high part of the signal
is one system clock period.

System Reset – Header J12 pin # is used to indicate (when low) to
the external world that the uPC controller is in a reset state. It
can be used in larger systems to monitor the state of the
PulseBlaster™ design.

A signal that is similar to System Reset is the Running signal,
header J12 pin #. It is driven high when the uPC is executing
code. It is taken low when the uPC has entered either a reset of
idle state.

The Stopped signal, header J12 pin #, is the last signal used to
indicate the state of the uPC. Stopped is asserted when the uPC
has encountered the stop command while normally executing code.
This signal informs the external world that the uPC has
successfully executed its program and has halted operation.

21

 Header and Signal Locations
The location of the relevant headers and connectors on the
PulseBlasterDDS™ board is presented in Figure 3.

SMA4 J4 SMA3 SMA2 J_Power2 J_Power1 J10(DB-
25)

Figure 3. PulseBlasterDDS Board – header/connector locations.

J12

JTrigger

22

1. General Discussion of DDS
Technology

Direct Digital Synthesis can be used to generate sinusoidal
waveforms from their digital representations. The digital
representation of a signal is discrete in both time and amplitude. To
generate a waveform, the sample amplitudes of the waveform are
calculated digitally and converted to a pseudo-analog waveform by a
digital-to-analog converter (DAC). The DAC has a step-like output
function, necessitating the use of an analog filter to smooth out the
waveform and interpolate between sample values. The output of the
analog filter approximates the desired analog waveform. A digital
system with enough bits for representing the waveform accurately and a
sampling rate that is high enough to allow rejection of higher order
harmonics will produce an extremely accurate and harmonically pure
signal. Figure 16 shows the signal generation line-up for a DDS
system. The sections that follow will describe, in detail, the
operation and performance characteristics of each of the blocks shown
below.

Figure 16: Analog Signal Generation Line-Up

Direct Digital Synthesizer (DDS) Architecture
The architecture of a DDS has three main blocks, see Figure 17. The

first block is labeled the Frequency Control Register (FCR). The FCR is
used to latch the Phase Increment (PI) value and synchronize it with the
rest of the DDS. The PI controls the phase and frequency of the

Section III: DDS Basics

PulseBlasterDDS

7/11/200223www.spincore.com

Figure 17: DDS Architecture

DDS output. The DDS uses phase accumulation to create sinusoidal signals
of interest. It is the PI value that specifies the amount of phase to be
accumulated between samples.

To better understand why phase accumulation is used, it should be
noted that the phase difference between any two points of a constant
frequency sinusoid, sampled at regular intervals, will be a constant
value. In other words, the phase of a sinusoid is linear with respect to
time. The linearity of a sinusoid’s phase with respect to time is the
key for generating sinusoidal waveforms using phase accumulation. All
frequencies up to the Nyquist frequency can be created by accumulating a
phase increment between sample times. Different frequencies are created
by varying the size of the phase step between sample instances.
Therefore, by controlling the phase steps in time, the frequency and phase
of a signal can be controlled.

The next block in the DDS is the phase accumulator. The phase
accumulator outputs a digital word representing a specific phase value.
The accuracy of the digital word representing the phase is determined by
the number of bits used in the digital representation.

 Phase Resolution = N2
2π

 (in radians), [4]

where N is the number of bits in the phase word. The accuracy of the
digital representation can be increased by using a wider (more bits) phase
accumulator. Since phase accumulation is used to generate frequencies of
interest, the frequency resolution of the DDS is also directly controlled
by the length of the PI input word. The frequency resolution can be
expressed by

Frequency Resolution = N
clkF

2
, [5]

where N is again the number of bits in the phase word and Fclk is the
frequency of the clock driving the DDS system.

It should also be noted that the phase of a sinusoid repeats every 2π
radians. This is beneficial for digital generation of sinusoidal signals.
The phase accumulator will overflow every 2π radians and repeat itself in
an exact analogy to the phase of a sinusoid.

PulseBlasterDDS

7/11/200224www.spincore.com

The third block is the Look-Up Table (LUT). The LUT is used to
convert a phase value to a corresponding amplitude in a normalized
sinusoid. It is the output values from the LUT that are fed into a DAC.
Generally, only part of the phase accumulator’s output (the most
significant bits) will be used by the LUT. This is done for several
reasons. First, larger memories are slower than smaller memories using
the same technology. The speed of the memory used to create the LUT is
critical in the performance of a DDS system. Second, the performance
characteristics of the DAC used to generate the analog waveform is the
limiting factor in system performance. There is no need to have a large
LUT if the corresponding amplitude resolution provided is greater than the
resolution of the DAC generating the analog output.

Digital to Analog Converter (DAC)
There are many different types of DACs. All DACs are similar in

that a DAC accepts a digital word as input and outputs an analog waveform.
The digital word is used to represent a sample of the output waveform,
specifying its magnitude. Since the digital input word specifies a
discrete magnitude that is held constant for one clock cycle, the output
of a DAC has a step-like response function.

Some key characteristic of all DAC’s are settling time, glitch
energy (switching transients), linearity, and precision. Settling time
specifies how long it takes the DAC to achieve optimum performance after
powering on. Glitch energy specifies how much energy is in the high
frequency transients caused by switching on the outputs. Linearity
describes the how uniform the output step sizes are between adjacent
digital words. Precision is a measure of how closely the DAC is able to
make the actual output match the theoretical output for a given digital
input word.

Reconstruction (Interpolation) Filter
Interpolation filters come in many forms: active, passive, and

electro-mechanical. All interpolation filters are used for one reason, to
“smooth out” the step-like response of the DAC output. The interpolation
filter can be either a lowpass or bandpass filter depending on the
undesired frequencies introduced by the non-ideal sampling. When the
interpolation filter “smoothes out” the DAC output, it is eliminating high
frequency harmonics of the signal of interest. It can also be used to
eliminate the high frequency glitch energy and switching transients of the
DAC.

Filters are a complex design choice. Factors such as phase
linearity, frequency selectivity, and insertion loss are just a couple of
the considerations when choosing a filter. Filters also have noise
figures, varying attenuation capabilities in the stopbands, varying
transition bandwidth, and passband ripple characteristics. All these
different characteristics make such a discussion outside the scope of this
discussion.1

Sources of Error in Waveform Generation
There are several sources of error for a DDS Waveform Generation

system. They include: phase and frequency error introduced by the
sampling clock, glitch energy in the DAC, phase truncation in the Phase
Accumulator, amplitude truncation in the LUT, the linearity of the DAC,
and the linearity of the Reconstruction Filter. All these sources of
error are unavoidable in real systems.

1 For a complete discussion of filtering considerations refer to Horn, 1992 – (16)

PulseBlasterDDS

7/11/200225www.spincore.com

The phase noise in the output introduced by the sampling clock is
mitigated to some extent by the high sampling rates used by DDS’s to
construct waveforms. The phase noise improvement in the output waveform,
in comparison to the phase noise of the clock source, will be (18):

 Phase Noise Improvement =

out

clk

F
F

10log*20 . [6]

The frequency noise introduced by the sampling clock is passed
directly through the DDS system. Any frequency error seen in the clock
changes the sampling rate of the DDS, moving the frequency response of the
DDS output. A system requiring extremely accurate frequency
representation should have a high stability clock as its reference. The
DDS, however, can be “tuned” to any crystal used and the frequency error
of the crystal can be compensated for in the DDS if necessary.

The phase truncation can be controlled by the number of bits used in
the phase accumulator of the DDS. The more bits used in the phase
accumulator the smaller the phase truncation error. In custom designs of
DDS systems, the phase accumulator width can be controlled. If an off-
the-shelf part is used, care must be taken to ensure proper width of the
phase accumulator.

Amplitude truncation is a two fold problem. The first place where
it can occur is in the LUT of the DDS. Amplitude truncation can be
reduced by expanding the depth and/or width of the LUT memory. The second
source of error in amplitude truncation is the DAC. The limiting factor
in system performance will be the device, either the LUT or the DAC, which
has the shortest digital word. In designing a system, care should be
taken to properly match the LUT width and DAC width to achieve optimum
performance.
The noise introduced by amplitude truncation is a function of the length

of the digital word used to represent a sample’s amplitude. The noise can
be modeled statistically and is dependent on the signal variance and the
full scale level of the DAC. The SNR of a signal with a given precision
in amplitude is (13)

= 2

2

10log10
N

SSNR
σ
σ

= 2

22

10
2*12

log10
M

S
B

X
SNR σ

−+=

S

MXBdBSNR
σ10log208.1002.6)([7]

where σS is the variance of the desired signal, σN is the variance of the
noise, XM is the full scale level of the DAC, and B is the number of non-
sign bits in a two’s complement number. There is an assumption made that
the DAC’s input is a two’s complement number. Note the last term in
Equation 7. It shows that the SNR is dependent on the relationship of the
rms value of the signal amplitude with the full scale level of the DAC.
It is important, therefore, to match the signal level with the full scale
output level of the DAC. For full-scale sinusoidal signals the SNR can be
reduced to (5),

dBBSNR)76.102.6(+= [8]

Several assumption are made in the following analysis. It is
assumed that the error introduced by amplitude truncation is a stationary
process, the error is uncorrelated with the desired output, and the error

PulseBlasterDDS

7/11/200226www.spincore.com

has a uniform distribution over the range of quantization error. These
assumptions are not always valid when generating fixed frequency signals,
but the analysis is simple and yields worst case noise floor performance
of the system. As the error becomes more correlated to the desired
signal, spurs will begin to rise out of the noise floor, but the noise
floor will start to drop at the same time. The basic tradeoff is that
noise energy is transferred from the broadband noise into spurious noise.
If the spurs produced can be filtered, concentrating noise energy in the
spurs can be beneficial since the filter will remove the spurs and the
noise floor has been reduced.

Summary of Direct Digital Synthesis Waveform Generation
In summary, the FRC is used to latch PI information and synchronize

it with the rest of the DDS. The DDS accumulates phase to generate
frequencies of interest. Frequency and phase changes are made by
adjusting the amount of phase accumulated on each clock cycle. If a
constant Phase Increment value is left in the Frequency Control Register,
the DDS will generate a constant frequency sinusoid. The phase and
frequency resolution of the DDS is dependent upon the size of the digital
word used by the Phase Accumulator. The LUT uses only the MSB of the
phase accumulator word to generate amplitude values corresponding to
specific phase values. The output of the LUT is sent to a DAC. The DAC
translates the digital word at its inputs to an analog value at its
output. The output of the DAC has a step-like response that the
Interpolation Filter will “smooth out”. Given the proper design
considerations, the output of the Interpolation Filter will be an
excellent representation of the desired signal of interest.

2. PulseBlasterDDS Specifics
This chip has four frequency registers with each register 32 bits wide.
The frequency register to use is controlled by control line generated by
the PulseBlaster PP core.

3. Calculating DDS Frequency
 The calculation of the frequency word for the DDS units is relatively
straight forward.

DDS frequency word (32 bits) = Desired Freq (in MHz) * 2^32

 Clock Freq (in MHz)
The calculated value above can be used when programming the DDS units.

 The frequency resolution of the default design is:
50e6 / 2^32 = 0.012 Hz

PulseBlasterDDS

7/11/200227www.spincore.com

Programming Notes for PulseBlasterDDS Ultra:

There are two methods of programming the PulseBlasterDDS
Ultra. You can either use the included C functions to create
the program for you by putting your pulse program in echo2.c
and recompiling it, or you can generate the appropriate
outputs directly to the device using the _outp command.

Method I. Using C functions

In order to program the board using a c program, you must
first initialize the board by using the following functions.
All of these steps are taken in the main routine of echo2.c.
You can replace the pulse sequence lines in echo2.c to skip
all of the initialization steps.

void* grab_image_memory(UINT32 length)

Used to allocate memory on the PC equal to the size of
the memory on the PulseBlasterDDS. The memory on the PC
will be programmed fully before being downloaded to the
PulseBlasterDDS.

length – Always use INTERNAL_MEMORY

DDS_Unit* grab_dds_memory(void);

Used to allocate memory for the programming of the DDS
registers.

HW_Parameters InitHW(UINT16 myPort, float
clock_frequency, UINT32 memory_type);

Initializes hardware specific variables for the
programming of the PulseBlasterDDS.

myPort – the base port address (e.g. 0x340)

clock_frequency – the clock frequency of the
PulseBlasterDDS in MHz

Appendix I: Programming Notes

PulseBlasterDDS

7/11/200228www.spincore.com

memory_type – Always use INTERNAL_MEMORY

After initializing the hardware specific variables, you must
then set the initial values of the TTL outputs and the values
of the frequency registers.

INT8 program_dds(UINT8 dds, UINT8 reg, double frequency,
DDS_Unit *dds_array);

Used to specify the values of each of the four frequency
registers.

dds – specifies which dds unit you would like to
program (Always set to 1)

reg - specifies which frequency register you would
like to program (Valid range of values is 0-3)

frequency – specifies frequency you wish to program
the register with (in MHz)

*dds_array – variable of type DDS_Unit to hold the
information until it is to be written to the board.
(Should be the same variable returned from
grab_dds_memory)

void program_initial_flag_values(UINT32 flags);

Used to set the initial state of the TTL outputs.

flags – holds hex value of information to be output
to the TTL outputs (only bits 9..0 are valid
outputs)

After initializing the flags and frequency registers, you then
need to generate your pulse program. This can be accomplished
by using the following sequence of commands.

output_control_word = FREQ0 | TX_DDS_GATE_OFF |
RX_DDS_GATE_OFF | 0xFFFF;

PulseBlasterDDS

7/11/200229www.spincore.com

The first part of the output control word is used to
specify the frequency to be used. Valid values are
FREQ0, FREQ1, FREQ2, and FREQ3

The second part specifies whether the first DAC output is
on or off. Valid values are TX_DDS_GATE_OFF and
TX_DDS_GATE_ON

The third part specifies whether the second DAC output is
on or off. Valid values are RX_DDS_GATE_OFF and
RX_DDS_GATE_ON

The fourth part of the control word specifies what the
TTL outputs should read during this pulse (Only bits 9..0
are valid)

Once the output control word has been generated, you must call
a function that uses this information to generate the actual
80-bit instruction word.

ADDRESS delay(double time, UINT32 flags, Instruction_Unit
*image);

Used to generate the specified pulse for the specified
amount of time. By calling this function the instruction
is automatically added to the copy of the internal memory
pointed to by the *image variable.

time – length of pulse (in ns)

flags – this should be output_control_word as generated
above

*image – this should be the variable returned from
grab_image_memory;

These variables have the same meaning for each of
the program functions;

ADDRESS stop(double time, UINT32 flags, Instruction_Unit
*image);

Stops execution of pulse program.

ADDRESS loop(double time, UINT32 loop_count, UINT32
flags, Instruction_Unit *image)

PulseBlasterDDS

7/11/200230www.spincore.com

Beginning of a loop. Loops this portion of the
program for loop_count times

ADDRESS end_loop(double time, UINT32 top_of_loop, UINT32
flags, Instruction_Unit *image)

End of a loop. Returns to command specified by
top_of_loop.

ADDRESS jump(double time, UINT32 next_addr, UINT32 flags,
Instruction_Unit *image)

Jumps to a subroutine whose address is specified by
next_addr

ADDRESS rts(double time, UINT32 flags, Instruction_Unit
*image)

Returns from a subroutine

ADDRESS branch(double time, UINT32 next_addr, UINT32
flags, Instruction_Unit *image)

Unconditionally branches to next_addr

After creation of the pulse program, you must create the text
file containing the programming information. The file will be
used when actually programming the board.

INT16 create_bytecode_file_dds(Instruction_Unit *image,
UINT32 image_size, DDS_Unit *dds, char *name,
HW_Parameters hw);

*image – Memory image returned from grab_image_memory.

image_size – always use INTERNAL_MEMORY

*dds – DDS image returned from grab_dds_memory.

*name – name of text file to be created

hw – use variable returned by InitHW

After writing all relevant information to a file, call the
following function to program the PulseBlasterDDS from this
file.

PulseBlasterDDS

7/11/200231www.spincore.com

INT16 program_pulseblaster(char *name);

*name – name of the text file as specified in
create_bytecode_file_dds() function

Once the board has been programmed, call start_pb() when you
are ready for the pulse program to run.

Other useful functions are listed below

void reset_pb(UINT16 port);

Used to stop the execution of the pulse program.

void restart_pb(UINT16 port);

Used to restart execution of the pulse program after a stop
order has been issued.

PulseBlasterDDS

7/11/200232www.spincore.com

Method II. Writing directly to the output port

The following is an example of the output sequence to program
the PulseBlasterDDS board. Explanations are included in
brackets in the middle of the code.

[Initialization:]

Output "0x00" to port base + 0 (Issue device reset)
Output "0x04" to port base + 2 (Select number of bytes per
word)
Output "0xFF" to port base + 3 (Select device to program (Flag
initial values))
Output "0x00" to port base + 4 (Reset address counter)

[Set initial flag values]
[value for this example are "0x00aaf0f0"]

Output "0x00" to port base + 6 (Data transfer)
Output "0xAA" to port base + 6 (Data transfer)
Output "0xF0" to port base + 6 (Data transfer)
Output "0xF0" to port base + 6 (Data transfer)

Output "0x00" to port base + 5 (Clock data into external
buffer)
Output "0x00" to port base + 5 (Return clock signal to low)

[Set up DDS frequency registers]

Output "0x00" to port base + 0 (Issue device reset)
Output "0x04" to port base + 2 (Select number of bytes per
word)
Output "0x01" to port base + 3 (Select device to program (DDS
Frequency Registers))
Output "0x00" to port base + 4 (Reset address counter)

[DDS Register Values]
[Reg0 = 051EB852 (1 MHz)]
[Reg1 = 0A3D70A4 (2 MHz)]
[Reg2 = 0F5C28F6 (3 MHz)]
[Reg3 = 147AE148 (4 MHz)]

[Formula for finding these values:]

[REG0 = DESIRED_FREQUENCY * 232 / PBDDS_CLOCK]
[= 1 MHz * 232 / 50 MHz = 858993459.2 = 0x051EB852]

PulseBlasterDDS

7/11/200233www.spincore.com

Output "0x05" to port base + 6 (Data Transfer - Byte 3 of
Reg0)
Output "0x1E" to port base + 6 (Data Transfer - Byte 2 of
Reg0)
Output "0xB8" to port base + 6 (Data Transfer - Byte 1 of
Reg0)
Output "0x52" to port base + 6 (Data Transfer - Byte 0 of
Reg0)

Output "0x05" to port base + 6 (Data Transfer - Byte 3 of
Reg1)
Output "0x3D" to port base + 6 (Data Transfer - Byte 2 of
Reg1)
Output "0x70" to port base + 6 (Data Transfer - Byte 1 of
Reg1)
Output "0xA4" to port base + 6 (Data Transfer - Byte 0 of
Reg1)

Output "0x0F" to port base + 6 (Data Transfer - Byte 3 of
Reg2)
Output "0x5C" to port base + 6 (Data Transfer - Byte 2 of
Reg2)
Output "0x28" to port base + 6 (Data Transfer - Byte 1 of
Reg2)
Output "0xF6" to port base + 6 (Data Transfer - Byte 0 of
Reg2)

Output "0x14" to port base + 6 (Data Transfer - Byte 3 of
Reg3)
Output "0x7A" to port base + 6 (Data Transfer - Byte 2 of
Reg3)
Output "0xE1" to port base + 6 (Data Transfer - Byte 1 of
Reg3)
Output "0x48" to port base + 6 (Data Transfer - Byte 0 of
Reg3)

[Pulse Program Setup]

Output "0x00" to port base + 0 (Issue Device Reset)
Output "0x0A" to port base + 2 (Select number of bytes per
word)
Output "0x00" to port base + 3 (Select device to program
(RAM))
Output "0x00" to port base + 4 (Reset address counter)

PulseBlasterDDS

7/11/200234www.spincore.com

Output "0x18" to port base + 6 (Byte 9 of first instruction)
Output "0xFF" to port base + 6 (Byte 8 of first instruction)
Output "0xFF" to port base + 6 (Byte 7 of first instruction)
Output "0x00" to port base + 6 (Byte 6 of first instruction)
Output "0x00" to port base + 6 (Byte 5 of first instruction)
Output "0x00" to port base + 6 (Byte 4 of first instruction)
Output "0x00" to port base + 6 (Byte 3 of first instruction)
Output "0x00" to port base + 6 (Byte 2 of first instruction)
Output "0x00" to port base + 6 (Byte 1 of first instruction)
Output "0x07" to port base + 6 (Byte 0 of first instruction)

Output "0xXX" to port base + 6 (Byte 9 of second instruction)

[Continue this process for all instructions. The
explanation of]

[how to create the 80 bit instruction words is included
below.]
[When finished with all instructions, continue with the
sequence]
[below.]

Output "0x00" to port base + 7 (Programming Finished)

[Only execute the following command when you are ready for
the]

[program to start running.]

Output "0x00" to port base + 1 (Start pulse program)

Breakdown of 80 bit instruction word

Instruction Bits 79...0 are broken up into 4 sections

2. Output Pattern - 24 bits (Instruction Bits 79..56)
3. Data Field - 20 bits (Instruction Bits 55..36)
4. OP Code - 4 bits -(Instruction Bits 35..32)
5. Delay Count - 32 bits - (Instruction Bits 31..0)

Output Pattern:

Instruction
Bit #

Function

79 Selects one of four frequency registers (MSb)
78 Selects one of four frequency registers (LSb)
77 None
76 Turns on/off output of DDS #1
75 Turns on/off output of DDS #2

PulseBlasterDDS

7/11/200235www.spincore.com

74 None
73 None
72 None
71 None
70 None
69 None
68 None
67 None
66 None
65 Output Connector DB25 pin 19
64 Output Connector DB25 pin 7
63 Output Connector DB25 pin 8
62 Output Connector DB25 pin 21
61 Output Connector DB25 pin 22
60 Output Connector DB25 pin 10
59 Output Connector DB25 pin 11
58 Output Connector DB25 pin 24
57 Output Connector DB25 pin 25
56 Output Connector DB25 pin 13

Data Field (Bits 55 – 36) and Op Code (Bits 35 – 32):
The data field's function is dependent on the OpCode.

OpCode # OpCode Meaning Data Field used for
0 Continue Ignored
1 Stop Ignored
2 Loop Number of desired Loops - 1
3 End Loop Address of Instruction originating loop
4 Jump to Subroutine Address of first subroutine instruction
5 Return From Subroutine Ignored
6 Branch Address of next instruction
7 Long Delay Number of desired loops - 2
8 Wait Ignored

Delay Count:
How long the current instruction should be executed. The
smallest possible delay is 6 clock cycles (120ns). The
formula for determining its value is below

DELAY_VALUE = (Desired Delay (ns) – 60 ns) / 20 ns

Ex. for delay of 1000 ns

= (1000ns – 60ns) / 20ns = 940ns / 20ns
= 47
= 0x2F

PulseBlasterDDS

7/11/200236www.spincore.com

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

#include<conio.h>

#include<math.h>

#include<malloc.h>

#include "spincore.h"

/* SPINCORE TECHNOLOGIES, INC

 GAINESVILLE, FL

 www.spincore.com

 This file is being distributed as community software free
of charge. SpinCore

 Technologies, Inc retains ownership of the software but
does not make any

 claims as to its functionaliy or warranty it in any way.
Any modifications

 to this code must be provide to SpinCore along with a
description of what

 was changed as well as the motivation behind the changes.
The modifications

Appendix II: Sample C program
(echo2.c)

PulseBlasterDDS

7/11/200237www.spincore.com

 will be reviewed by SpinCore and made availible to others
if the changes are

 deemed positive by SpinCore.

 This is an beta release of code. As such

 there may be bugs in the code. */

// MAIN PROGRAM //

void main(int argc, char *argv[])

{

 UINT16 port_addr = 0x340;

 UINT32 temp;

 UINT32 output_control_word;

 INT16 temp2;

 Instruction_Unit *program;

 DDS_Unit *dds;

 HW_Parameters hw_spec;

 ADDRESS address;

 UINT8 unit, reg, i, j, *dds_word;

 double freq;

 if(argc != 1 && argc != 2)

 {

 printf("\nCommand line ERROR.\n");

PulseBlasterDDS

7/11/200238www.spincore.com

 printf("Command line usage is \"driver filename\"\n");

 exit(0);

 }

 if(argc == 2)
 {
 if(strcmp(argv[1],"-stop")==0){ /* command line option to
issue stop */

reset_pb(port_addr); /* reset command to the NMR
Controller */

printf("\nStop Command has been issued to NMR
Controller.\n");

exit(0);

}

if(strcmp(argv[1],"-start")==0){ /* command line option to
issue start */

arm_pb(port_addr);

start_pb(port_addr); /* start command to the
NMR Controller */

printf("\nStart Command has been issued to NMR
Controller.\n");

exit(0);

}
 }

 /* Initialize Code */

 program = grab_image_memory(INTERNAL_MEMORY);

 dds = grab_dds_memory();

PulseBlasterDDS

7/11/200239www.spincore.com

 hw_spec = InitHW(port_addr,50,INTERNAL_MEMORY);

 /* Program DDS frequency registers */

 program_dds(1, 0, 1, dds);

 program_dds(1, 1, 2, dds);

 program_dds(1, 2, 3, dds);

 program_dds(1, 3, 4, dds);

 program_initial_flag_values(0x00AAF0F0);

 /* Create program for Pulse Programmer Core;

Label definitions are in spincore.h

(you may define your own labels as well)

*/

// begin your program here

 output_control_word = PHASE1 | FREQ0 | TX_DDS_GATE_OFF |
RX_DDS_GATE_OFF | 0xFFFF;

 address = delay(0.2*us, output_control_word,program); //
synchronization state

 output_control_word = PHASE1 | FREQ0 | TX_DDS_GATE_ON |
RX_DDS_GATE_ON | 0x0000;

address = delay(5*us, output_control_word,program); // first
pulse

 output_control_word = PHASE1 | FREQ0 | TX_DDS_GATE_OFF |
RX_DDS_GATE_OFF | 0x0000;

address = delay(100*us, output_control_word,program); //
first delay

PulseBlasterDDS

7/11/200240www.spincore.com

 output_control_word = PHASE1 | FREQ1 | TX_DDS_GATE_ON |
RX_DDS_GATE_ON | 0x0000;

address = delay(2.5*us, output_control_word,program); //
second pulse

 output_control_word = PHASE1 | FREQ1 | TX_DDS_GATE_OFF |
RX_DDS_GATE_OFF | 0x0000;

address = delay(100*us, output_control_word,program); //
second delay

 output_control_word = PHASE1 | FREQ2 | TX_DDS_GATE_ON |
RX_DDS_GATE_ON | 0x0000;

address = delay(1.5*us, output_control_word,program); //
third pulse

 output_control_word = PHASE1 | FREQ2 | TX_DDS_GATE_OFF |
RX_DDS_GATE_OFF | 0x0000;

address = delay(100*us, output_control_word,program); //
third delay

 output_control_word = PHASE1 | FREQ3 | TX_DDS_GATE_ON |
RX_DDS_GATE_ON | 0x0000;

address = delay(1.25*us, output_control_word,program); //
fourth pulse

 output_control_word = PHASE0 | FREQ0 | TX_DDS_GATE_OFF |
RX_DDS_GATE_OFF | 0x0000;

 address = branch(1.6*ms,0,output_control_word,program);
//repetition delay, loops back)

 output_control_word = PHASE2 | FREQ3 | TX_DDS_GATE_OFF |
RX_DDS_GATE_OFF | 0xFFFF;

 address = stop(500*ns,output_control_word,program); //
never executed, if all OK

 /* Create file to be used by driver function */

PulseBlasterDDS

7/11/200241www.spincore.com

 /* This file can be very useful in debugging errors since
it allows

 the programmer to see what is actually being programmed
to the

 board. */

 if (argc == 1)
 {
 temp2 = create_bytecode_file_dds(program, address, dds,
DEFAULT_OUTPUT_FILE, hw_spec);
 }
 else
 {
 temp2 = create_bytecode_file_dds(program, address, dds,
argv[1], hw_spec);
 }

 if(temp2 != 0){

 printf("Error create bytecode file, error code
%d\n",temp2);

 exit(1);

 }

 /* Program PulseBlaster/PulseBlasterDDS series board with
info

 contained in file created by function
create_bytecode_file */

 if (argc == 1)
 {
 temp2 = program_pulseblaster(DEFAULT_OUTPUT_FILE);
 }
 else
 {
 temp2 = program_pulseblaster(argv[1]);
 }

 if(temp2 != 0){

PulseBlasterDDS

7/11/200242www.spincore.com

 printf("Error programming board, error code %d\n",temp2);

 exit(1);

 }

 /* start execution of program */

 start_pb(port_addr); /* command to start
PulseBlaster */

}

	Complete Digital Excitation System:
	Direct Digital Synthesis (DDS),
	Arbitrary Waveforms, and TTL
	Block diagram
	Output signals
	Timing characteristics
	Instruction set
	Function
	
	
	External triggering
	Summary
	
	ISA Bus Controller

	Direct Digital Synthesizer (DDS) Architecture
	
	
	Reconstruction (Interpolation) Filter

	Sources of Error in Waveform Generation

